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Abstract A

Anti-Epileptic Drugs (AEDs) are prescribed for extended periods of time for patients suffering from disabling seizures.
This manuscript reviews main methods and tools available for the detection of AEDs for patients, assessing the advantages and
drawbacks of each technique. On one hand, chromatography-based sensors are highly selective and sensitive; however, they
are often time-consuming and require specialized technicians and bulky equipment. Optical-based and micro cantilever sensors
are sensitive and easy to manipulate; nevertheless, they generally lack selectivity and also require specialized technicians. On
the other hand, electrochemical-based sensors, although not as sensitive as chromatography-based ones, are easiest to operate
and possess the potential to be selective, miniature, and implantable. After a thorough analysis of the scientific literature, it was
found that electrochemical biosensors are most likely the best for Therapeutic Drug Monitoring (TDM) since they are simple,
do not require much labor and expertise, are inexpensive, have a quick time of analysis, only require a small sample and can be
miniaturized for Point of Care (POC) applications. More- over, electrochemical sensors may be modified through immobiliz-
ing Molecular Imprinted Polymers (MIP) at the Working Electrode’s (WE’s) surface. All these factors make electro- chemical
techniques most suitable for TDM and remove a lot of the hassle associated with other methods. )

Keywords:  Anti-Epileptic Drug (AED); Biosensor; amount of analyte present in the solution [2]. Among commonly
Chromatography; Electrochemical; Epilepsy; Therapeutic Drug  immobilized material are enzymes, antibodies, nucleic acid chains,
Monitoring (TDM) and hormones. An analyte is defined as a component of interest

Introduction generally measured by its chemical or physical properties [4-6].

Biosensors are nowadays ubiquitous in biomedical
diagnosis as well as a wide range of other areas such as point-
of-care monitoring of disease treatment or progression [4],
environ- mental monitoring [4], food quality control [5], drug
discovery [6], forensics and personalized treatment [2,4]. One of
their main applications is the detection of biomolecules that are
either indicators of a disease or targets of a drug [2]. In particular,
electrochemical biosensors can be used as clinical tools to detect
protein cancer biomarkers [7-9]. Currently, glucose biosensors
are the most widely used biosensor accounting for 85% of home-
used biosensors worldwide as diabetes mellitus treatment involves
precise control of blood-glucose levels [10,11].

The history of biosensors dates back to as early as 1906 when
Cremer demonstrated that the concentration of an acid in a liquid
is proportional to the electric potential that arises between parts
of the fluid located on opposite sides of a glass membrane [1].
However, a first complete biosensor was only developed in 1956
by Leland Clark Jr for oxygen detection [2,3]. After these initial
contributions, much attention has been allocated to the research
and development of a large variety of biosensors. A biosensor is
an analytical device which often contains immobilized biological
material which specifically interact with an analyte and produce
a physical, chemical or electrical signal proportional to the
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(Figure 1) illustrates the general layout of a biosensor. The elements
that interact, recognize or detect an analyte are referred to in this
text as biosensing elements, and components that generate or help
generate a signal related to a certain physical or chemical property
of an analyte are referred to as transducing elements.
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Figure 1: The general layout of a biosensor [12].
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Biosensors essentially involve the quantitative analysis of
various substances by converting their biological properties into
measurable signals. (Figure 2) illustrates the process of generating
a signal from an analyte. The performance of a biosensor is mostly
dependent on the specificity and sensitivity of the biological
reaction, which is highly determined by the sensor’s biosensing
and transducing elements [5,13]. This review presents the latest
biosensing and transducing elements applied to the detection
of AEDs. Biosensors were categorized according to their main
blocks: transducing element and biosensing element. Sections
were assigned to the different categories with a focus on methods
deployed, results and efficacy.
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Figure 2: Transducer signaling process in a biosensor [12].

Biosensor Characteristics

When analyzing Dbiosensors, there are numerous

characteristics that allows us to assess their performance including
selectivity, reproducibility, stability, sensitivity, and linearity.
Selectivity is the ability of a bioreceptor to detect a specific
analyte in a sample containing contaminants. The best example
of selectivity is depicted by the interaction of an antigen with
the antibody. Reproducibility, on the other hand, is the ability
of the biosensor to generate identical responses for a duplicated
experimental set-up. Furthermore, reproducibility is characterized
by the precision and accuracy of the transducer and electronics in a
biosensor [5,13]. Reproducible signals provide high reliability and
robustness to the biosensor’s inference. Stability, the most crucial
feature of a biosensor, is the degree of susceptibility to ambient
disturbances in and around the biosensing system.

These disturbances can cause a drift in the output signals of
a biosensor under measurement causing an error in the measured
concentration and can affect the precision and accuracy of the
biosensor. Sensitivity is the biosensor’s signal strength which
along with the sensor’s stability affect the minimum amount
of analyte that can be detected by a biosensor, referred to as its
Limit of Detection (LOD). Linearity is the attribute that shows
the accuracy of the measured response (for a set of measurements
with different concentrations of analyte) to a straight line [2]. The
linearity of the biosensor can be associated with the resolution of
the biosensor and the range of analyte concentrations under test.
Finally, the resolution of the biosensor is defined as the smallest
change in the concentration of an analyte that is required to bring
a change in the response of the biosensor [2].

In addition to all above characteristics, biosensor
miniaturization has proved to be beneficial for various reasons.
For instance, reducing the size of the biosensor to the micro- or
nanoscale can result in a better signal-to-noise ratio as well as the
possibility of using smaller sample volumes, which means lower
assay costs. Moreover, when going towards nanoscale dimensions,
the surface-to-volume ratio of the sensing active area increases,
and the sizes of the detecting electrodes and that of the target
biomarker become comparable. This reduces non-specific binding
and increases binding efficiency towards the target molecule.
As a result, the bioreceptor becomes an active transducer for the
sensing system and it becomes possible to perform single-molecule
detection [2,14]. Miniaturization also allows for easier integration
of these sensors in point-of-care monitoring allowing them to be
implantable.

Anti-epileptic Drugs and Therapeutic Drug Monitoring

AEDs are the first line of treatment offered to epileptic
patients. These drugs are gener- ally taken by mouth once, twice or
three times a day depending on their pharmacokinetic properties.
Post absorption, AED levels reach a point where the patient is
most protected against seizures, and where risks of dose-related
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side effects are highest. Levels will then gradually decrease until
reaching a trough where the patient has the least seizure protection.
Anew, levels will rise with the intake of the next dose. While low
serum concentrations may have no therapeutic effect, high serum
concentration may cause side effects [15].

Common dose-related side effects of AEDs include dizziness,
blurred vision, dysarthria, ataxia, somnolence, and psychomotor
slowing. Currently, more than fifteen AEDs are avail- able on the
market. The most commonly used include Carbamazepine (CBZ),
Valproic Acid (VPA), Levetiracetam (LEV), Phenytoin (PHT) and
Lamotrigine (LTG) [16]. Therapeutic Drug Monitoring (TDM)
of concentrations of drugs in body fluids, usually plasma, can be
used during treatment. This information is used to individualize
dosage so that drug concentrations can be maintained within
a target range. In the routine management of epileptic patients,
physicians will frequently order punctate blood levels of AEDs for
various reasons such as a) to ensure that the patient has reached a
sufficiently protective dosage, especially in the context of elderly
patients, liver or renal disease, pregnancy, and polypharmacy (due
to the possibility of drug interactions); b) assessing adherence
or com- pliance; and c) detect or avoid therapeutic overshoot of
dosing and development of overt clinical toxicity.

The current practice of ordering punctate AEDs levels has
several limitations: a) there are numerous conditions which may
affect drug levels, some of which are unpredictable and others
for which the neurologist may be unaware of before it is too late
(e.g. poor compliance, new onset co-morbid condition, pregnancy,
prescription by another physician of a drug which can interact with
AEDs such as oral contraceptives pills, grapefruit consummation
which may elevate for example carbamazepine levels etc.);
b) results from AED testing will vary according to the time of
measurement (before the AED was taken versus several hours after
the dose was taken); c) because patients need to go to a health care
facility and wait in line for blood collection, obtaining these AED
levels can be time consuming and sometimes logistically difficult,
especially for elderly patients and those who require frequent drug
levels.

A sensor capable of continuously measuring AED levels in
the bloodstream or tissue in vivo would give clinicians a valuable
window into patients’ health and their response to therapeutics.
This device could allow for example: a) a better understanding
of (intra- or inter-individual) drug level variations whether it can
be over 24h, days, weeks or years, at various ages, during certain
concomitant physiological (e.g. pregnancy, sleep) or pathological
conditions (surgery, alcohol intoxication etc.); b) a comprehensive
assessment of compliance by patients; c¢) a thorough causality
assessment between drug levels and side effects or seizure
protection; d) a better assessment of the impact of switching from
brand-name to generic AEDs. Unfortunately, continuous, real-

time measurements are currently only possible for a handful of
targets, such as glucose, lactose, and oxygen and the few existing
platforms for continuous measurement are not generalizable
for the monitoring of other analytes, such as small-molecule
therapeutics.

The Transducing Element

Abiosensor is a sensing device that compromises a biological
component-referred to as a sensing element in this text - and a
transducer that transforms biochemical activity into a measurable
signal proportional to the quantity of analyte present. In this
section, the transducing element of the biosensor will be discussed
and categorized into chromatography- based, optical-based, and
electrochemical-based sensors.

Chromatography Based Methods

Chromatography-based methods are one of the most
adopted methods for TDM of AEDs because of their high
accuracy, sensitivity and selectivity [17-22]. Drawbacks include
that they require expensive bulky instruments and a long time
for sample pretreatment. The four main types of chromatography
techniques are liquid chromatography, gas chromatography,
thin-layer chromatography and paper chromatography. In liquid
chromatography, the liquid solvent containing the sample mixture
travels by gravity through a column containing solid adsorbent
material. Contingent upon the mixture’s interaction with the
adsorbent material, different flow rates separate the components
as they flow out of the column. An improved version of liquid
chromatography is High-Performance Liquid Chromatography
(HPLC) [23-25] where the solvent is pressurized by a pump
through the column reducing the time of separation. In gas
chromatography, helium is used to move a gaseous mixture through
a column of absorbent material. Gas chromatography is applied in
analytical chemistry for separating and analyzing compounds that
can be vaporized without decomposition for testing the purity of
a substance or separating the different components of a mixture
[26].

Both thin-layer chromatography and paper chromatography
use an absorbent material on flat glass or plastic plates as stationary
phases; however, in contrast to paper in paper chromatography,
silica or alumina is used in thin-layer chromatography. All
mentioned chromatography techniques are often coupled with
mass spectroscopy to enhance detection after separation [27,28].
The latter is an optical-based detection technique which relies
on quantifying particles through measuring their mass-to-charge
ratio after ionization. Due to their precision, accuracy and high
selectivity, HPLC and gas chromatography are the most widely
used techniques for therapeutic drug monitoring. Shah et al. [29],
implemented a HPLC technique by taking a sample of dried blood
spots from patients for the simultaneous determination of AEDs
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LEV, LTG, Phenobarbital (PHB), CBZ and carbamazepine 10,11
epoxide (CBZE). Dried blood spots sampling provides multiple
advantages over conventional venous sampling such as: a) only a
small volume of blood is required, beneficial for amassing samples
from newborns, youth and seniors; b) it can be performed by non-
professionals; c) the dried blood spots samples do not need to be
processed and prepared; e) most importantly, once dried, many
analytes including antibodies are stabilized on filter paper [30].
However due to the use of minimal sample volumes, there is a high
risk of false negatives with dried blood spots sampling [31]. Prior
to analysis, whole blood aliquots were prepared from the dried
blood spots samples by adding 75% buffer (25 mM phosphate
buffer pH 6.2), 15% acetonitrile and 10% methanol.

Afterwards, 10 ml of analyte diluted in methanol at
concentrations corresponding to recorded therapeutic ranges were
added to 0.95 mL of the prepared blood aliquots. HPLC analysis
using an XBridgeT M C,; column (150 mm x 4.6 mm, 3.5 um;
Waters, UK) combined with ultraviolet detection was then carried
out for a total run time of 28 min. The method was then validated
by evaluating selectivity, linearity, limit of detection, accuracy
and recovery. It was found that the mobile phase consisting of
the above-mentioned mixture enabled the best chromatographic
conditions to achieve good resolution of all analytes, including
LEV which is highly polar and requires a mobile phase with
little organic strength. Ultraviolet detection using a wavelength
of 205 nm was then carried out to monitor the absorbance of
the analyzed AEDs. Ultraviolet detection was used adjacent to
liquid chromatography mass spectrometry since all the AEDs of
interest are active at relatively high concentrations (ng/ml, rather
than ng/ml). Apart from good selectivity, linearity, and accuracy
within 15% at all quality control concentrations, acceptable Limit
of Quantification (LOQ) and Limit of Detection (LOD) values
were achieved as provided in (Table 1). Finally, it was found
that extraction of AEDs from the tested samples using methanol:
acetonitrile (3:1, v/v) gave the best recovery enabling the extended
use of blood samples.

AED LOD (ug/ml) LOQ (pg/ml)
LEV 0.38 1.15
LTG 0.223 0.676
PHB 0.318 0.963
CBZE 0.3 0.908
CBZ 0.258 0.78

Table 1: Calculated LOD and LOQ for AEDs in dried blood spots samples
[29].

De Almeida, et al. [32] on the other hand, used liquid
chromatography coupled with mass spectrometry for the
determination of AEDs bromazepam, lorazepam, CBZ, and
diazepam. Specifically, samples were pre-concentrated with the
aid of C,; Premium 300 mg/3 ml cartridges pre-conditioned with
10 ml methanol and 10 ml water (pH 2.0), and the analytical
determinations were carried out using a liquid chromatograph
equipped with a binary pump, a degasser, a column oven and an
automatic injector. Furthermore, the operational conditions were
the following: analytical column = Zorbax SB C, 5 pum, 4.6 x
150 mm; mobile phases = water and methanol, both containing
1.0% v/v formic acid. The gradient program adopted began with
10% mobile phase methanol, then the mobile phase was increased
linearly up to 80% for 5.5 min. Afterwards, it was kept at 80 %
until 8 min was reached, then increased again to 90% until 11 min,
finally increased to 100% from 13 min to 15 min before dropping
it back to initial conditions (Table 2).

Time (min) Flownrl?:; (ml/ V(I)Illlj; ‘131(1::3(()31) Methanol %
Initially 0.7 25 10
0-55 0.7 25 10 - 80
55-8 0.7 25 80
8-11 0.7 25 80-90
11-13 0.7 25 90
13-15 0.7 25 90 - 100
Final 0.7 25 10

Table 2: HPLC gradient program [32].

After separation, the compounds were quantified using
a mass spectrometer equipped with an electrospray ionization
source. The spectrometer was optimized by infusing the working
solution of each analyte and determining both the ionization mode
and precursor ion. Furthermore, the ionization conditions were
found by injecting a standard solution of each analyte at a rate of
100 pg/l. The mass spectrometer parameters used are presented
in (Table 3). De Almeida et al. were able to achieve satisfactory
precision and exactitude with intra-day precision values between
3.6 % and 5.8 % and inter-day precision values between 5.1 % and
9.5 %. Finally, the LOD values were found to be between 4.9 and
6.1 ng/l and the LOQ between 30 and 50 ng/1.
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Drug Precursor lon (m/z) Product Ion (m/z) DP. CE. (%) CCEP.
Bromazepam 316 214 106 39 12
156 106 45 10
CBZ 237 194 130 53 10
179 130 53 10
Clonazepam 316 270 101 35 14
181 101 67 8
Diazepam 285 193 56 53 10
154 130 53 10
Lorazepam 321 275 101 53 10
302 106 47 10

DP: Declustering Potential; CE: Collision energy; CCEP: Collision Cell Exit Potential

Table 3: Mass spectrometer parameters used [32].

Hashem, et al. [33] implemented an HPLC method that is simple, rapid, accurate, and stable for the quantification of PHB and PHT
in various forms: powder forms, dosage form and in urine samples. Prior to analysis, stock solutions of PHB (1 mg/ml) and PHT (1 mg/
ml) were dissolved in methanol and acetonitrile respectively. Furthermore, apart from control samples, others were loaded with either
HCL, NaOH or H,0, or exposed to ultraviolet radiation in order to perform forced degradation studies. The different samples containing
PHB were separated using an analytical column with an isocratic binary mobile phase of MeOH/H, O (38.0/62.0, v/v) at a flow rate of
3 ml/min at a temperature of 40°C and detection was achieved at 214 nm. Whereas the PHT containing samples were separated using
an analytical column with an isocratic binary mobile phase of ACN/H,O (25.0/75.0, v/v) at a flow rate of 1 ml/min at 40°C and detected
at 220 nm. Phenobarbital showed a strong degradation with NaOH, and a weak degradation with HCL, H,0,, and upon exposure to
ultraviolet radiation. Phenytoin, on the other hand, showed weak a degradation with all NaOH, HCL, H,O,, and upon exposure to
ultraviolet radiation. In order to study the detection limit of the HPLC method developed, 13 concentrations of PHB and PHT solutions
ranging from 0.061-100 pg/ml were prepared. The graph of the peak area versus concentration provided linearity in the range of 1 - 20
pg/ml for PHB and 1 - 50 pg/ml for PHT. The limits of quantification were found to be 0.250 pg/ml for PHB and 0.500 pg/ml for PHT.
Both drugs were further analyzed, PHB in suppository, and PHT in capsules and spiked urine. Results are provided in (Table 4).

PHB PHT
Recovery St. Addition (suppository) Recovery St. Addition (suppository) Spiked urine
Average 100.78 99.3 96.91 96.05 96.69
RSD 2.62 2.94 1.06 1.67 0.68
SD 2.6 2.96 1.09 1.74 0.7

Table 4: Determination of PHB and PHT in Dosage forms or in Urine [33].

of methanol: phosphate buffer (pH 5) adjusted with 0.1 M NaOH
(50:50), a flow rate of 1.0 ml/min and a run time of 9 min were

Shah, et al. [34] developed an accurate, simple, rapid, precise
and linear technique using reverse phase HPLC for simultaneous

estimation of PHT and PHB. The term reverse phase describes the
chromatography mode that is opposite of a normal phase, namely
the use of a polar mobile phase and a non-polar hydrophobic
stationary phase. Shah et al. tested different chromatographic
conditions for better separation and resolution. A mobile phase

found to be fit for the analysis. Furthermore, ultraviolet detection
was at 215 nm for both drugs. The mobile phase was also used
as the solvent to prepare the drug solutions. The linearity of the
test solutions for the assay using 5 different concentrations of each
drug was found to be within the concentration range of 10 - 30
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pg/ml and 3 - 9 pg/ml for PHT sodium and PHB respectively.
The retention time for PHT was 3.97 min and 6.90 min for PHB.
The LOD for PHT was 1.44 ng/ml and 4.36 pg/ml; the LOD for
PHB was 0.4 and 1.35 pg/ml. The proposed reverse phase HPLC
method used methanol and phosphate buffer which are both easily
available and achieved a recovery rate of 98 % to 100 % for each
drug which made it simple, easy to perform and economical.

Optical Based Methods

Optical biosensors employed in AED detection offer great
advantages because they enable direct, real-time and label-free
detection of many biological and chemical substances [35,36].
Their advantages also include high specificity, sensitivity, smallness
and cost-effectiveness. Optical-based detection is performed by
exploiting the interaction of an optical field with a biorecognition
element [37]. Spectrophotometry is a simple optical technique
that relies on measuring the absorbance of a medium to light. It
requires a photometer to measure the intensity of light through
an analyte containing medium by studying the wavelength. This
simple technique has been employed in AED detection systems
[38-44] to detect and characterize analytes according to their
absorbance spectra. Revanasiddappa, et al. [45] used a UV-Vis
Spectrophotometer to study the determination and degradation
of oxycar- bamazepine, a keto analog of carbamazepine, in HCI,
NaOH, H,O,, thermal and UV radiation. They concluded that
the absorbance spectra of oxycarbamazepine solution prepared
in methanol:acetonitrile (50:50, v/v) showed a direct correlation
with the amount of analyte present at a wavelength of 255 nm. The
LOD and LOQ measured by Revanasiddappa were 0.0550 pg/ml
and 0.1667ug/ml respectively. However, despite good sensitivity,
Revanasid- dappa’s method does not claim to be selective.

On the other hand, Rezaei, et al. [46] used partial least-
squares regression combined with UV-spectrophotometry in
order to achieve selective detection of both CBZ and PHT.
Partial least-squares regression is a linear statistical method that
measures the correlation of two variables and has been utilized in
spectrophotometric-multicomponent analysis of various drugs in
biological and pharmaceutical samples [47-53]. Authors found a
correlation with the drugs and their respective absorbance spectra
and reported recovery percentages of CBZ and PHT to be 98.4 and
98.2 respectively. However, the authors do not yet propose this
method as an alternative to HPLC for in plasma detection which
is a complex medium. In addition to spectrophotometry, surface
plasmon resonance, the most common optical technique, relies
on a phenomenon that occurs on the surface of metals (or other
conducting materials) at the interface of two media (usually glass
and liquid) when it is illuminated by polarized light at a specific
angle.

This generates surface plasmons and consequently a

reduction of the intensity of reflected light at a specific angle
known as the resonance angle. This effect is proportionate to the
mass on the surface. As a result, a sensogram can be obtained by
measuring the shift of reflectivity, angle or wavelengths against
time. (Figure 3) demonstrates the basic schematics of a surface
plasmon resonance setup as well as the sensogram measurements.
Multiple and various interacting molecules or biosensing elements
could be immobilized depending on the analyte of interest, which
makes surface plasmon resonance a universal technique suitable for
various biosensing applications. For example, to measure a ligand-
analyte interaction, one interacting molecule must be immobilized
on the sensor surface. However, small molecules, such as most
therapeutic drugs, once captured on the surface, may not affect the
refractive index significantly, which makes their direct detection
and quantification difficult. Furthermore, nonspecific binding is an
issue that occurs in most universal detectors and is defined as the
adsorption or binding on the sensor’s surface of molecules that are
not related to the analysis [54].

.
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Figure 3: The principle of a surface plasmon resonance instrument (left)
and a typical surface plasmon resonance sensorgram showing the steps of
an analytical cycle (right).

Fu, et al. [55], developed a prototype biosensor that takes
advantage of surface plasmon resonance for the detection of PHT
in saliva. Saliva is not often used as a sample for TDM; however,
it is an ideal sample for patients since its collection is non-invasive
and painless, and samples can be obtained more frequently than
would be practical with blood [56]. Nevertheless, analytes,
especially PHT, are often present in saliva at concentrations that
correlate well with their free levels in the blood. Phenytoin was
tested in both phosphates buffered saline and human saliva. Saliva
was preconditioned by a 0.2-um-pore conventional polymeric
filter and a microfluidic diffusion-based separations device, the flat
H-filter [57,58]. This combination of filters removes 98 % of the
glycoprotein/mucin content and 92 % of the protein content, while
retaining 27 % of the small-molecule analytes [59].

To act as a source, a near infrared light-emitting diode was
used along with stationary wide-field image imaging optics. A
compact liquid crystal polarizer enabled electronic switching
of the source between a transverse magnetic mode, where the
magnetic field is perpendicular to the wave-guide axis, and a
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transverse electric mode, where the electric field is perpendicular
to the wave-guide axis. Additionally, the concept of folded optics,
to miniaturize the optical module whilst still achieving a long
optical path producing a strong and focused beam.

Apart from that, Fu, et al. [55] utilized a 1/3”” CCD with 640 x
480 pixels’image detector with a fastreadoutto enable improvement
of image statistics through averaging and a low background noise
to operate at high light levels. The CCD, integrated into a camera
with a powerful digital signal processor was able to acquire and sum
images at 30 frames per second. Fu, et al. [55] then used a custom-
coded software to control both data acquisition functions such as
light-emitting diode translation, polarization switching and image
acquisition, and fluid motion such as valve and pump actuation.
Finally, the data analysis function was created using MATLAB

a b

BSA-phenytain

20
PEG

PBS + 150 nbd anti-phenytain c

and implemented on a tablet-style paper chromatography enabling
large processing power and a high-resolution display.

In order to produce a change in the refractive index, the
unknown amount of PHT was mixed with a known amount
of anti-PHT which was then introduced to the PHT-surface
immobilized detection zone. Only the free unbound anti-PHT
binds to the immobilized PHT causing a change in the refractive
index quantifiable by the SPR imaging system. The SPR signals
provided in (Figure 4) indicate that both the rate of binding and
the total coverage of anti-PHT are inversely correlated with the
concentration of PHT. Furthermore, in order to detect different
AEDs, antibodies for the AED of interest could replace that of
PHT and by a small-range translation of the source the instrument
response can be optimized.
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Figure 4: Parallel indirect immunoassays for PHT conducted using multiple flows. (A) The SPR difference image shows the outcome of anti-PHT
binding to the surface from samples containing 0, 50, or 100 nM PHT in phosphate buffer premixed with 150 nM anti-PHT after 5 min (B) Assay results
for PHT spiked into PBS (C) Assay results for PHT spiked into preconditioned saliva [59].

Electrochemical Methods

Electrochemical methods are a class in analytical chemistry
which rely on either current or voltage to detect and measure the
analyte. Located in an electrochemical cell, the analyte is subjected
to an excitation signal followed by measuring the response signal
representing the concentration of the analyte. Such methods are
mainly potentiometry, voltammetry, and impedance spectroscopy.
Due to ease-of-application, sensitivity, low-cost, minimal need for
labor and least damage to analyte, electrochemical methods are
highly reliable. Biosensing elements could be immobilized on the
surface of the working electrode to improve upon its selectivity.
However, the working electrode could also be modified with
different materials to amplify the strength of the signal which will
improve the signal-to- noise ratio [60,61]. Several factors may
affect electrochemical evaluation, such as the electric conductivity
of the electrode, solvent type, scan rate, and distance between

electrodes. Therefore, it is important to control such factors in
order to achieve reproducible results.

Raoof, et al. [62] developed a highly sensitive voltammetric
sensor for the determination of PHB in the presence of
acetaminophen. Cyclic voltammetry and differential pulse voltam-
metry were conducted using a multiwalled carbon nanotube paste
electrode as the working electrode, a platinum wire as the counter
electrode and an Ag|AgCIlKCI (3 M) electrode as the reference
electrode. Multiwalled carbon nanotubes are allotropes of carbon
with cylin- drical nanostructures possessing large-surface area, high
stability at nanoscale, and high thermal, electrical and mechanical
conductivity. They were able to attain detection limits for AC and
PHB 0of 0.17 and 0.1 M, respectively.

On the other hand, chemical doping at the electrode’s surface
has proved to be effective for chemo-biosensing applications [63-
65]. Lavanya, et al. [66], developed an electrochemical sensor
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for the determination of CBZ levels. They modified the working
electrode by Fe- SnO, doped with Fe*. The added active elements
stabilize the SnO, surface and promote a decrease in grain size
which enhances higher catalytic activity and sensor response than
that of pure SnO,. The behaviour of CBZ at the Working Electrode
(WE) was investigated using CV and Square Wave Voltammetry
(SWV). Despite achieving oxidation peaks at 0.78 V for a bare
screen-printed electrode which is much lower than literature
values ~1.15 V [14,62,66,67], modifying the electrode resulted in
a significant increase in anodic peak currents of CBZ (Ipa = 14.8
pA) (Figure 5). This increase in anodic current is due to the large
effective electrode surface area and higher electron conductivity
of the Fe doped SnO, NPs. To conclude, their fabricated sensor
displayed a good electro-oxidation response towards the detection
of CBZ at a lower oxidation potential of 0.8 V in phosphate buffer
solution at pH 7.0with a wide linear range of 0.5-100 uM and a
low detection limit of 0.5-100 uM.
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Figure 5: A) Anodic scan of CVs of 50uM CBZ at a) bare SPCE, b) Sno,;
B) CVs obtained at different scan rates [66].

On the other hand, Balasubramanian, et al. [68] developed
a CBZ detection biosensor based on both graphene oxide and
Graphitic Carbon Nitride Composite (GO/g-C3N4). Despite its
specific electronic structure, low toxicity and stability, g-C,N,
was found to be limited due to its low electrical conductivity
[69,70]. Therefore, graphene oxide was added along with g-C\N,
to the electrodes surface. This improves electrocatalytic activity
along with the detection limit, sensitivity and linear range. Cyclic
Voltammetry was used in order to prove the superior electro-
catalytic activity of (GO/gC3N4). Performance of the GO/g
C3N4 modified glassy carbon electrode was compared g-C\N, /
GCE, in a N, -purged 0.05 M phosphate buffer solution. The
working electrode had excellent electro-catalytic activity with an
overpotential of only 0.1V. and attained the best rate of the electron
transfer as can be seen in (Figure 6). Furthermore, an amperometric
assay calculated the limit of detection of CBZ on the modified
electrode along with the sensitivity to be 10.5 nM and 1.727 pA
uM'em? respectively.
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Figure 6: A) EIS spectrum of bare GCE (a), g-C3N4/GCE (b), GO/GCE
(c), and GO/g-C3N4/GCE (d). (B) CVs of bare GCE (a), g-C3N4/GCE (b),
GO/GCE (c), and GO/g-C3N4/GCE (d) in 0.05 M PBS (pH 7) containing
20 uM CBZ and GO/g-C3N4/GCE (d’) absence of 20 uM CBZ at scan
rate of 50 mVs'. (C) Anodic current response of 20 uM CBZ on various
amount ofg-C3N4 loaded GO. (D) The effect of loading amount of GO/g-
C3N4 composite on GCE [68].

Lin, et al. [67], developed a biosensor to find serum levels of
CBZ in rabbits. This was accomplished using DPV with GCE as
the working electrode. Initially, dropping mercury electrodes were
to be used; however, mercury is not only toxic to the environment
but can also enter the human body by inhalation or ingestion,
potentially resulting in acute mercury intoxication, which can
manifest as chills, chest pain, dyspnea, and pulmonary infiltration,
or chronic mercury intoxication, which can cause tremors, social
withdrawal, irritability, perspiration, rash, and paresthesia [71].
Furthermore, pre-treatment of the test samples with acetonitrile
was crucial to maintain a good performance of the DPV method
which would be affected by the presence of N, S, or O the common
elements in serum. Blood samples from rabbits that were fed
CBZ were obtained and added to a 3-electrode setup containing
a glassy-carbon electrode as the working electrode, a platinum
wire as auxiliary electrode, and an Ag/AgCl, KCI as reference
electrode. Different concentrations of CBZ were tested: 4, 8, 12
pg/ml. The detection limit was 0.14 pg/ml for the DPV technique.
For comparison reasons Lin also performed the fluorescence
polarization immunoassay method which resulted in a detection
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limit of 0.2 pg/ml. The correlation between the CBZ concentrations
from DPV compared with those by fluorescence polarization
immunoassay was good (RSQ = 0.998). Lin concluded that the
electrochemical sensor had a superior detection limit, precision and
accuracy compared to fluorescence polarization immunoassay.

In a work similar to Lin, Wang, et al. [72], also developed
a biosensor for the determination CBZ levels in serum using
DPV and a bare GCE as the working electrode. Furthermore, the
performance of the sensor was also compared with fluorescence
polarization immunoassay technique. The tested samples were
prepared in 7 different concentrations (0, 2, 4, 8, 12, 20 and 23.6
pg/ml) by dissolving CBZ in 0.1 M TBAP/ acetonitrile (Figure
7). The DPV parameters were the following: pulse amplitude: 50
mV; pulse width: 0.05 (sec); sample width: 0.0167(sec); pulse
period: 0.2 (sec); scan rate: 20 mV/sec. The detection limit was
1 pg/ml for the DPV technique however was 0.5 pg/ml for the
fluorescence polarization immunoassay technique. Despite the fact
that fluorescence polarization immunoassay performance exceeded
DPV in Wang’s work, the performance of the DPV technique
was within the FDA guidelines for bioanalytical methods, which
ensures the clinical applicability of the DPV technique.
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Figure 7: Typical DPV potential of CBZ in serum developed at +1.37 V
and -2.25 V [72].

Finally Pan et al. [73] confirmed the reliability of DPV for
measuring CBZ levels in human serum. The latter used a GCE
with the following setup parameters: DPV pulse amplitude, 50 mV;
pulse width: 0.05 s; sample width: 0.0167 (s); pulse period: 0.1 s;
and scan rate: 20 mV/s. Again, the correlation between the results
obtained by the DPV technique and the fluorescence polarization
immunoassay technique were very good with RSQ = 0.998 (Figure
8).
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Figure 8: (A) Bland-Altman plots of the DPV results and reference value concentrations. The solid line represents the mean difference, and the dashed
line represents 1.96 SD; (B) Bland-Altman plots of the FPIA results and reference value concentrations. The solid line represents the mean difference,

and the dashed line represents 1.96 SD [72].

The Biosensing Element

In the context of biosensors, a receptor is used to aid in
analyte detection; it is often im- mobilized on the transducer’s
surface to specifically bind to the target analyte or a molecule
related that target. Generally, bioreceptors include a vast category
of molecules including enzymes, polymers, nucleic acids,
proteins, and aptamers; however, given the paper is limited to at
AED bioreceptors, the below sections will only cover bioreceptors

utilized for AED detection. According to the reviewed papers,
AED bioreceptors utilized in recent research centralize around
antibodies [74-80] or molecular imprinted polymers (MIPs) [81-
88].

Antibody-Based Bioreceptors

The concept of antibodies generated from the field of
immunoassays which relies on the selective binding and high
affinity of the antigen to the antibody. Not only have antibodies
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been incorporated on large-scale AED sensing systems, but
their use has migrated towards nano-scale systems such as
micro-electrodes, microcantilevers and miniature microfluidic
systems. In his research, Huang [89] added PHT-antibodies to
his piezoresistive micro- cantilever beam for PHT detection. The
antibodies were incorporated into a microfluidic channel where
analytes can enter and bind to the receptors. The use of a microfluid
channel enhanced detection by filtering out unwanted particles,
thus enabling the PHT particles to solely enter and bind to the
antibodies. The binding yielded a deflection and thus an associated
resistance change due to the molecular recognition. This change in
resistance was then measured to interpret variations in PHT levels.
The sensor had a linear detection response ranging from 10 to 80
pg/ml with a signal resolution of 0.005 € and a sensitivity of 2.94
x 10-6 pg/ml.

In a similar research, Huang [90] utilized VPA selective
antibodies which allowed the detection of a different drug, VPA.
The VPA sensor had a calculated LOD of 45 pg/ml, and a measured
drug-antibody binding affinity of around 90 + 21 pg/ml. Both
biosensors were label-free and were compared to Fluorescence
polarization immunoassay (FPIA) measure- ments of PHT/VPA
in bovine and were shown to yield comparable results in the
relevant clinical concentrations. Huang’s research demonstrates
the versatility of piezoresistive mi- crocantilevers where all
that is required is a change of the bioreceptor used. (Figure 9)
demonstrates the side-view of the biosensor and the various layers
that were used in its construction.

E-beam deposition Au/Cr
(24 nm/6 nm)
PECVD SixNy (600 nm)

LPCVD Polysilicon (120 nm)
PECVD SiO; (400 nm)
LPCVD SixNy {215 nm)

E-beam deposition Au/Cr
(150 nm/15 nm)

Figure 9: Fabrication process of a piezoresistive microcantilever sensor
[90].

In an antibody based detection sensor, Yang, et al. [74]
reported the detection of CBZ, PHT, and VPA in serum utilizing
a Cloned Enzyme Donor Immunoassay (CEDIA). To per- form
concurrent detection, they fabricated a multi-well ImmunoChip by
xurography. The ImmunoChip surpasses conventional analytical
devices by requiring small volume of samples, and being smaller in
size due to automated manufacturing. CEDIA is an immunoassay
technique were the reaction requires the addition of two separately
inactive antibody-fragments. Once added together, these inactive
fragments form an active antibody ready to bind to the target analyte.
This procedure does not need any separation steps since fragments

are initially inactive. To proceed with detection, Yang mixed AED
spiked serum samples with the first CEDIA reagent. The second
CEDIA reagent was then immediately added to the solution. Once
mixed, the mixture was transferred to the multi-well ImmunoChip
containing freshly Beta-Glo reagent solution. Once exposed to a
bright luminescent signal, graphs of relative light intensity versus
AED concentrations were generated. Although the LOD and LOQ
was not specified, Yang provided evident graphs that relative light
intensity varied over the range of AED concentration. Furthermore,
the highest calculated coefficients of variation intra-assay and
inter-assay, were reported to be 6.9% and 9.3% for CBZ, 5.3% and
9.6% for PHT, and 5.6% and 9.2% for VPA.

MIP-Based Bioreceptors

As a cheap alternative to natural antibodies, MIPs have
been widely researched [91-93]. MIPs are chemically synthesized
molecules designed to mimic the behavior of antibodies. They
typically involve a monomer, a porogen, a cross-linker, an
initiator, and the template of interest. Once the MIP is polymerized
across the template, the template is removed to leave a gap which
resembles its structure. This gap is similar to the target template
and has an affinity to bind to a molecule with similar structure.
MIPs have proven to be robust, slightly affected by pH variations,
reproducible, simple to fabricate, and most importantly cheap. It is
however important to determine the initiating reagents proportions
and conditions to synthesize functional MIPs.

Since MIPs are robust, it is relevant to explore their usage
in electrochemical based systems which highly rely on the
immobilization of biosensing molecules on the electrode’s surface.
Commercially available electrodes are often expensive and lack
selectivity, hence, it is necessary to fabricate application specific
electrodes. These application specific electrodes differentiate from
the aforementioned by the ease of fabrication, reproducibility and
strong affinity towards the analyte. To achieve these characteristics,
MIP are added to the electrode’s setup.

Gholivand et al. developed an electrochemical MIP-based
biosensor for the selective detection of LTG [94]. MIPs were
fabricated using a non-covalent molecular imprinting approach was
used. After polymerizing, LTG was extracted from the polymers
by soxhlet extraction; tetrahydrofuran was used and the removal
of the template. The LTG-free MIP was then immobilized on the
Carbon Paste (CP) working electrode and cyclic voltammetry was
performed. In order to confirm the ability of MIPs to bind to LTG
it was compared to an electrode immobilized with Non-Imprinted
Polymers (NIP) along with a bare CP electrode. NIPs have been
prepared similarly to MIP without the addition of a template.
Cyclic voltammetry graphs in (Figure 10) show that MIP-CP had
the highest current response, validating the selective detection of
LTG.
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E(V)

Figure 10: Cyclic voltammograms of different electrodes immersed in the
1.0 x 10-6 M LTG solutions after 7 min preconcentration. Determination
conditions: acetate buffer pH = 5.5 and scan rate 100 mV/s [94].

The selectivity of the designed MIP-based CP electrode
through DPV was further evaluated by inserting the electrodes into
aqueous solutions of LTG and LTG similar compounds.

(Figure 11(B)) shows a distinct response to LTG when
compared to LTG-similar compounds, unlike (Figure 11(A)) and
(Figure 11(C)) were no significant LTG-related response could
be concluded. Furthermore, the sensor’s response was linear
throughout LTG concentrations of 0.8-25 nM and 25-400 nM with
a calculated limit of detection of 0.21 nM.
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Figure 11(A-C): The DPV response of sensors based on a (A) CPE, (B)
MIP-CPE and (C) NIP-CPE immersed in solutions containing LTG and
LTG similar compounds [94].

Furthermore, MIPs have replaced antibodies and other
expensive biosensing elements in chromatography based methods.
Hoshina, et al. [95] developed a MIP-based biosensor for the
successive determination of four different AEDs. Rather than
utilizing an electrochemical approach, they combined MIPs as
biosensing elements with a chromatography-based detection
method. In order to study the effect of different monomers on
functionality of the imprinted polymers, polymerization was tested

with MAA, 2-VP and 4-VP as monomers. It was found that the
4-VP based polymer exhibited the best selectivity when compared
to other monomers. Drug induced samples were pre-treated prior
to chromatographic analysis by passing through a MIP packed
column, then into the analytical column. 2 mM ammonium acetate-
acetonitrile (60:40, v/v) was then administered at a flow rate of 0.2
mL/min. The proposed method was both accurate and reproducible
and graphs of peak area ratio versus AED concentrations were
linear with a correlation 0of>0.999. Furthermore, limits of detection
and limit of quantification were as follows: PHB 15 and 5.0 ng/L,
amobarbital 8.0 and 2.0 ng/L, and PHT 2.0 and 0.50 ng/L.

Discussion and Conclusion

AEDs are given as a treatment to control seizures; therefore,
detecting optimal dosage on purely clinical grounds can be difficult.
Furthermore, continuous AED monitoring rises as a necessary
technique to optimize patients’ outcome and providing them
with a safe course of treatment. TDM is currently performed in
centralized laboratories equipped with bulky instruments, such as
immunoassay analyzers and mass spectrometry, which can be used
by trained personnel only. Particularly mass spectrometry, coupled
with high-performance liquid chromatography (HPLC-MS),
is routinely used in core facilities. The financial costs related to
instrumental operation and maintenance, and the time required for
the preparation and analysis of samples, for processing the results,
affects the application of TDM in medical practices. Therefore,
a new generation of analytical tools, capable of providing rapid,
sensitive and reliable diagnosis, is necessary to respond to the
timely need of drug control aiming at effectively treating epileptic
patients.

With all the various assets brought forward by detection
techniques, it is often hard to specify an optimal solution. Vastly
developing transducing techniques along with biosensing elements
are spiraling towards sensitive, accurate, label-free, cheap and easy
to operate biosensors. Because AEDs have a narrow therapeutic
range, are often administered as a form of poly-treatment, and are
susceptible to high toxicity reactions, AED detection biosensors
must be sensitive but also highly selective in order to eliminate or
decrease the effect of unwanted particles. Hence, it is necessary to
combine the advantages offered by both transducing and biosensing
elements to produce the desired outcome. (Table 5) sums up the
common biosensors employed for AEDs detection or monitoring.

The main detection techniques regarding PHT and PHB
determination have focused on techniques such as: a piezoresistive
cantilever combined with the immobilization of biomolec- ular
receptors operating as biosensing elements; electrochemical DPV
using a multi-walled carbon nanotube modified Pt electrode;
and HPLC combined with UV spectroscopy. For LEV, the main
detectiontechniqueis HPLC-ES-MS/MS coupled withimmobilized
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protein for selective detection. Furthermore, VPA main detection
techniques are mostly piezoresistive microcantilever combined
with antibody immobilization. Finally, most CBZ detection sensors
are electrochemical based combined with chemically modified
working electrodes. It is justifiable to say that no specific biosensor
has yet been employed to detect multiple AEDs without the need
for bulky equipment, sample pre-conditioning, or specialized
clinicians. By examining the existing techniques provided in
(Table 5), it is possible to choose one detection technique that
may be integrated into a miniature, label-free, economical, easy to
operate, and accurate biosensor. Although not the most sensitive
or selective, electrochemical transducing techniques such as CV,
DPV, SWV, and EIS are the simplest to operate, enable label-
free detection and fast response times. Combined with MIPs
surface immobilized electrodes, electrochemical biosensors could
become highly selective and suitable for multi AED detection.
Furthermore, using appropriate dopants or by adding graphene or
carbon nanotubes, electrodes could also become highly conductive,
thereby increasing the sensitivity of the sensor.

We described in this paper the most recent AED

detection systems by highlighting their respective biosensing
and transducing elements. When designing an AED detection
biosensor, it is important to opt for the optimal combination of
biosensing and transducing elements. The latter mainly affect
signal quality and accuracy of the biosensor whereas biosensing
elements achieve selectivity towards the analyte of interest.
All aforementioned transducing elements present good signal
quality and high accuracy. Different elements offer varying
degrees of ease-of-operation, damage to analyte, response time,
and ability to be rendered implantable. Electrochemical methods
turn out to be least destructive, easiest to operate and suitable
to be integrated on a miniature implantable chip. However
electro- chemical biosensors often lag selectivity if not coupled
by a biosensing element. Microfluidic channels, antibodies, and
MIPs all compensate through enhancing selectivity, particularly
MIPs prove to be convenient, cheap and highly reliable. A MIP
immobilized electrochemical biosensor may be a good alternative
to bulky centralized equipment enhancing AED monitoring and
providing point-of-care treatment.

Ref. Tran. Sens. Drug LOD Sel. L.R. Com.
[54] RP-HPLC - PHT 1.44 pg/mL High P %zrégoi (:: r;_g; ];l g}:ﬁlﬁ"' High
[55] SPR Antibodies PHT 50 nM High - High
[63] CV and SWV NPs CBZzZ 0.34 uM Low 0.5-100 uM moderate
[67] DPV MWCNT/ Pt-NPs PHB 0.1 upM Low 0.4-60 uM Low
[72] DPV - CBZzZ 1 pg/mL Low - Low
[72] FPIA - CBZ 0.5 pg/mL High - High
[89] PM Antibodies PHT 9.5 ng/mL High 10-80 pg/mL High
[90] PM Antibodies VPA 45 pg/mL High 50-500 pg/mL High
[94] DPV MIP LTG 0.21 nM High 0.8-25 and 25-400 nM moderate
[96] CvV GO-g-C3N4 CBZ 10.5 nM Low 0.092-266 pM Low
LEV 0.380 pg/mL
[97] _ LTG 0.223 pg/mL ) _
HPLC High - High
PHB 0.318 pg/mL
CBZ 0.258 pg/mL
[98] HPLCI\_/FSS_MS/ Protein I;,?Sn’lifn\: 50 pg/mL High - High
[99] DPV - CBZ 0.14 pg/mL Low - Low
PM: Piezoresistive Microcantilever IRTD: Iron doped tin dioxide.

Table 5: Various drug transducing and sensing systems along with their LOD, selectivity, linear range, and complexity.
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