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Abstract

Several protein-specific domains, such as intrinsically disordered domains and o-helical segments have been described as
promising targets for malaria blood stage vaccine candidates. Used alone or in combination, these protein domains have been
shown in numerous studies to be antigenic/immunogenic and correlated with protection against clinical malaria. However, their
potential as part of an approach to develop a single multivalent, multispecific vaccine antigen based on self-assembled protein
nanoparticle (SAPN) delivery system is less explored. Here, using a designed SAPN model, we discuss the relevance of a P27/
P27A nanoparticle-based blood stage antigen with other blood stage antigens, such as the dimorphic and C-terminal domain
fragments of the two PfMSP2 allelic families. Thus, the goal of this work is to promote studies investigating the stability, safety,
and protective properties of multivalent nanoparticle malaria vaccines against the two major malaria pathogens. Therefore, we
postulate that the combination of the a-helical coiled-coil and unstructured antigens into SAPN constructs will yield a promising
blood stage malaria vaccine candidate to protect against both P. falciparum and P. vivax infections.
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Introduction

Advanced bioinformatic analyses of the Plasmodium genome and
proteome have led to the identification of Plasmodium proteins
containing o-helical coiled-coil segments and intrinsically
disordered regions. We and others have shown that these domains
are antigenic/immunogenic, and immune responses against these
proteins are correlated with protection against clinical malaria.
Their potential, however, has not been fully explored. Their use
in multivalent, Self-Assembling Protein Nanoparticle (SAPN)
constructs is still largely understudied. These scaffolds can present
a variety of antigenic fragments at once, enabling vaccines to
generate immunity against multiple species simultaneously [1]. As
a result, this strategy is attractive for targeting malaria in regions
where Plasmodium species-such as P. falciparum and P. vivax-
coexist [2].

Here, we discuss the relevance and feasibility of synthesizing SAPN
vaccine candidates against blood-stage malaria which leverage??
a-helical coiled-coil regions and intrinsically disordered domains.
Specifically, we aim to use the non-polymorphic domains P27
and P27A derived from blood-stage protein 1, in conjunction
with antigens from the dimorphic and C-terminal fragments from
the two PfMSP?2 allelic families. The final goal is thus to create
multivalent SAPN blood stage malaria vaccines against the two
primary malaria pathogens, P. falciparum and P. vivax.

Current Malaria Vaccines-Limitations and Challenges

So far, only two P. falciparum vaccines-RTS, S/AS01/Mosquirix
and R21/Matrix-M-are recommended by the World Health
Organization (WHO) for widespread use for children in sub-
Saharan Africa [3,4]. Both vaccines are pre-erythrocytic, virus-
like particles which include the same immunizing antigen: the
P. falciparum Circumsporozoite Protein (PfCSP). RTS, S/AS01/
Mosquirix affords modest protection against the disease, with
a ~39% efficacy rate in children in Sub-Saharan Africa after
administering four doses [3]; however, available supply of RTS, S
is limited. Furthermore, R21/Matrix-M reaches a 75% efficacy rate
against clinical malaria during the 12 months following a 3-dose
series [4]. Despite these advances, the development of efficient and
robust malaria vaccines is far from finished. This is especially true
for vaccines based on blood-stage malarial antigens, and those that
would create immunity against multiple species simultaneously.
Promising immunogenic antigens have been identified as ideal
for multi-antigenic construct designs. This offers the opportunity
to select effective blood-stage antigen candidates targeting both
major malaria pathogens [22].

SAPN Delivery System-Relevance in Vaccine Development

Nanoparticles (NP, 1-100 nm in diameter) containing immunogenic
antigens are advantageous vaccine candidates. These constructs
function both as a delivery system (carrier) of antigens and as
an immune-stimulating or immunomodulatory agent (adjuvant),
making them attractive research targets compared to conventional
vaccines [5,6]. Furthermore, NP protect their corresponding
antigens against proteolytic cleavage, prolonging their half-life and
increasing the duration of antigen exposure to immune cells [6,7].
As aresult, there is great interest in this technology for developing
vaccines and drugs against infectious diseases, including malaria

(8].

Various NP delivery systems have been explored, including
liposome NP, polymeric and inorganic NP, self-assembled
protein NP (SAPN), virus-like particles and virosomes, and
self-amplifying RNA vaccine deliveries [6,7]. SAPN are well-
explored particles, which result from oligomerization of several
monomer subunits [9,10]. Indeed, these constructs enable the
incorporation of multiple protein domains into a stable complex
and present antigenic / immunogenic epitopes on their surface. In
addition, SAPN allow for B- and T-cell epitopes to be inserted
into the N- or C-termini of the monomer-encoding gene, resulting
in more effective immune responses which trigger both cellular
and humoral immunity [9,10]. Furthermore, it may be possible to
obtain a strong immune response in humans without the addition
of antigens as seen in a mouse model with coiled-coil domain [9].

Antigenic-SAPN As Stable, Multivalent Vaccine Candidates
Against Blood-Stage Plasmodium

P27, P274A And MSP2 Characterized Motifs as Promising
Antigen Candidates

We in conjunction with others have demonstrated that a-helical
coiled-coil regions and intrinsically unstructured domains present
in the blood-stage proteins P27 and P27A, as well as MSP2, are
promising vaccine candidates that warrant further exploration[9,11-
13]. P27 (27 aa:845-871) and P27A (104 aa:223-326) fragments
are derived from TEX1/PFF0165c. Our work demonstrated that
immune responses against these proteins is associated with partial
protection from Plasmodium [14]. P27 and its extended segment
Ext-P27 (P{-27-NC; 49 aa:846-893) are a-coiled coil domains with
antigenic properties that can be safely coupled with adjuvants.
We also found that P27 and its extension Pf-27-NC and P27A are
suitable for inclusion into self-assembling protein nanoparticle
(P27/P27A-SAPNs, P27A/Pf-27-NC-SAPNs, P27A/Pf-27-NC-
SAPN), with SAPN monomers effectively displaying each antigen
at their N and C termini [9]. We showed that these constructions
had high immunogenicity in murine models without the use of
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an adjuvant. The Pf-27-NC fragment is highly conserved among
different Plasmodium species and therefore has been recommended
for use in constructs aimed at providing cross-protection against P.
falciparum and P. vivax [9].

In addition, we have shown that the intrinsically unstructured
fragments in the PfIMSP2 allelic family proteins 3D7 and FC27,
such as their dimorphic (D) regions (88aa:111-198 and 48 aa:143-
191, respectively) and the constant C-terminal (40 aa:198-238;
3D7 numbering) were antigenic and immunogenic, both alone and
in combination with various adjuvants in both mice and humans
[11,15]. Those studies also revealed significant cross-reactivity
of natural antibodies for both PfMSP2 allelic families over
time, which is strong evidence that including both allelic family
fragments in a vaccine construct will further enhance efficacy.

SAPN Antigen Construct Containing P27, P27a and PfMSP2
Motifs

Here we illustrate the design of P27/P27A-based SAPN constructs
using the antigen described above. In addition, recombinant
antigen (FusN) comprising the two allelic D and C fragments of
PfMSP2 and P27A [16] proved to be a better antigen/immunogen,
with specific antibodies strongly associated with protection. This
SAPN was further modified by changing P27 with the extended
Pf27-NC. The 3D arrangement of the second construct was
modeled using AlphaFold [17] (Figure B). Only one designed
construct out of many is shown within the spherical core of the
SAPN. As reported above, the three antigens P27, P27A and MSP2
were tested in mice with conventional adjuvants and were found
to be highly immunogenic and superior to a mixture of individual
ones [15,16].

Figure: Self-assembling protein nanoparticle construct containing
Plasmodium falciparum a-helical coiled-coil region and
intrinsically unstructured domain derived from TEX1 and PfIMSP2

Self-assembling protein nanoparticle (SAPN) construct includes
the dimorphic D and C-terminal domains of the two allelic
families of PIMSP2 (3D7 and FC27), Pf-P27A and designed
pentameric and trimeric a-helical coiled-coil segments as a core
for the construction of SAPN, and extended Pf-P27 (Ext-P27)
fragment, i.e., Pf-27-NC; NC, N- and C-terminal. (A) Schematic
representation of the SAPN construct sequence and (B) its 3D
arrangement, modelled with AlphaFold [119]. Only one designed
construct of many is shown within the spherical core of the SAPN;
the results are not sufficiently accurate for unstructured regions.
TEX1, trophozoite exported protein 1; MSP2, merozoite surface
protein 2; D, dimorphic region of each allelic family of MSP2; C,
C-terminal or common region for the two allelic MSP2 families,
Pf, Plasmodium falciparum.

In addition, the novo-designed pentameric and trimeric
oligomerization domains present in the SAPN constructs lack
homology with human proteins, which minimizes the possibility
of inducing immune responses that could be detrimental to the
host. At the same time, our strategy emphasizes the potential for
including both P. falciparum and P. vivax antigens in a single
antigen, thereby promoting cross-protective candidates. Indeed,
we have shown a high degree of cross-reactivity between P
falciparum and P. vivax coiled coil orthologs [18]. Thus, fragment
Pf-27-NC, which is highly conserved among Plasmodium species,
may be an effective antigen for multivariant vaccines to generate
cross-reactive protective immunity. This is similar to the inclusion
of both allelic family MSP2 protein fragments as described above.

Conclusion

Overall, our proposed strategy will determine the design feasibility
and efficacy of multivalent, multispecies, cross-protective malaria
vaccine candidates. We have highlighted the advantages of using
SAPN delivery systems to design blood-stage malaria vaccines.
We will incorporate antigens derived from both P. falciparum
and P. vivax into the N- and C-termini of SAPN to obtain a cross-
reactive immunogen. In addition, these strategies will overcome the
extensive polymorphism exhibited in many human Plasmodium
antigens and avoid time-consuming characterization of the three-
dimensional structure of native proteins/domains.

Expert Opinion

The present work outlines the trends and perspectives in
developing malaria vaccines using highly conserved o-helical
coiled-coil regions and intrinsically unstructured domains present
in the asexual blood-stages antigens of both P. falciparum and P.
vivax parasites.
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Here, we focused on a-helical coiled-coil protein segments
suitable for inclusion into malaria vaccine candidates that target
blood-stage malaria. Typically, a-helical coiled-coil motifs are
composed of 30-50 aa residues containing multiple seven-residue
repeat sequences (abcdefg)n, where nonpolar residues are usually
present at positions a and d, and polar residues everywhere else
in the sequence [13,19]. These a-helical coiled-coil motifs occur
frequently on the surface of pathogens and, when isolated, can
spontaneously assemble into stable, native folded structures. Their
features make them attractive templates for mimicking structural
epitopes in vaccine development. The initial study consisted of in-
silico identification of these motifs from a large group of proteins
from the P. falciparum erythrocytic phase, using the malaria
gene bank. Selected sequences were synthesized, chemically
characterized and further used to determine their antigenicity using
ELISA assessment with sera of individuals from malaria endemic
regions in Africa. Circular dichroism studies of these segments
showed, in general, the presence of an a-helical structure [20,21].

These studies also indicated that many of the motifs were
recognized by semi-immune individuals in an age-dependent
manner; of note, the sera reactivity was associated with clinical
immunity to P. falciparum in the study populations [20,21]. We
assessed the in vitro activity of antibodies against a select set
of antigens and found a significant association between in vitro
antibody-dependent cell-mediated inhibition (ADCI) assays and
clinical immunity of donors [12,21]. Furthermore, we selected
three coiled-coil fragments displaying the best performance in the
described assays and designed a multi-epitope construct (Pf-181),
which was synthesized and tested to determine its immunogenicity
in mice [12].

Based on this encouraging data and the conserved nature of these
protein fragments, we performed an in-silico analysis to identify
ortholog P. vivax coiled-coil sequences. These were synthesized
and evaluated for immunoreactivity using sera from P. vivax
endemic areas in Papua New Guinea and Colombia [22]. Both the
high antigenicity and immunogenicity of the orthologous motifs,
their association with clinical immunity, and their cross-reactivity
with P. falciparum sera, were confirmed [18,22]. A synthetic P.
vivax multi-epitope construct has been recently produced using
the selected orthologous sequences and has demonstrated good
immunogenicity in rodents.

The a-helical coiled-coil epitopes make these domains prime
candidates for incorporation into Self-Assembling Protein
Nanoparticles (SAPNs) which our laboratory has developed over
the past few years [9]. An early SAPN prototype, displaying both a
coiled-coil sequence and the intrinsically unstructured P27A region
of the Tex1 protein, demonstrated good immunological properties
and served as the basis for engineering several a-helical coiled-

coil antigens into one single SAPN to serve as a multi-functional
immunogen [9].

We have also investigated so-called “natively unstructured regions”
of protein fragments from blood-stage P. falciparum to include
them into in malaria vaccine candidates [19]. These unstructured
motifs, which are frequent in all genomes (30-40%) and especially
common in eukaryotic cells, are most suitable for mimicking native
linear epitopes [23]. Indeed, these motifs have highly hydrophilic
amino acid sequences that cannot form a hydrophobic core needed
to stabilize a globular structure. Furthermore, these regions
can be readily identified in bioinformatic analyses, and their
corresponding peptides are mostly soluble, unfolded and mimic
the native state [19,23-25]. Furthermore, we have investigated
peptide fragments and recombinant proteins representative of these
intrinsically unstructured domains — such as those of the merozoite
surface protein 2 (MSP2) -as vaccine antigens [11,15]. Indeed,
these domains were found to be reactive against sera from endemic
areas, and immunogenic in mice. In addition, various epitopes
from the unstructured domains of MSP2 could be identified,
with variations according to the age of the population. We have
furthermore reported that antibodies specific to these intrinsically
unstructured domains (alone or in combination) had a significant
association with protection against clinical malaria and exhibited
parasite growth inhibition activity [12,15,16]. Therefore, we are
confident that the combination of the a-helical coiled-coil and
unstructured antigens into SAPN constructs will yield a promising
malaria vaccine candidate to protect against both P. falciparum and
P. vivax infections.
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