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Abstract

Staphylococcus aureus, a Gram-positive bacterium, is a leading cause of various biofilm-associated infections in humans
and animals, posing significant economic and healthcare challenges. Biofilms exhibit heightened resistance to antimicrobial
agents as well as to immune-mediated clearance, thus persisting for long periods of time. Hence, novel therapeutic approaches
are needed to eradicate S. aureus biofilms. Peptide nucleic acids (PNAs), synthetic DNA analogs with a peptide backbone
instead of sugar backbone, offer a promising approach. In this study, we designed, synthesized and tested the efficacy of
several synthetic antisense PNAs coupled with cell-penetrating peptides (CPPs), targeting essential and biofilm related S.
aureus genes to inhibit staphylococcal biofilm growth using standard microtiter plate and tygon catheter biofilm assays.
P-PNAs targeting the genes for intercellular adhesion locus, ica, cell wall/membrane/envelope biogenesis, fmhb, accessory
regulator, sarA, sensor histidine kinase, saeS, repressor of toxins, rot, response regulator, yycF and histidine kinase, yycG
genes were tested. Two scrambled PNAs and CPP alone were used as controls. Only one P-PNA, targeting sar4, showed the
strongest biofilm inhibitory activity (up to 40 %) at a concentration of 50 uM or higher. This novel P-PNA could be a useful
adjunct for the treatment S. aureus biofilm infections.
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Introduction

The Gram-positive opportunistic pathogen, Staphylococcus
aureus, is the major causative agent of diverse biofilm-associated
infections in humans and animals. Being a part of the normal
microbiota of the skin and upper airways, S. aureus can readily
establish various kinds of biofilm infections of the living tissue
(biotic surfaces) such as the skin, soft tissue, bones and cystic
fibrosis airways among others [1-6]. Staphylococcus aureus can
also easily reach implanted devices such as catheters and prosthetic
joints to establish biofilm infections on these abiotic surfaces [7].
In most cases, the S. aureus infection remains localized on these
infected surfaces. However, the infection can spread to other parts
of the body via the bloodstream causing serious complications [8].

The unique structural organization of the biofilms, with complex
extracellular matrix, prevent the deeper penetration of antimicrobial
agents into the biofilms and reaching the organisms at sufficient
concentration to mediate antibacterial effects. This confers
bacterial antibiotic resistance without the presence of resistance
genes [9-11]. It has been demonstrated that the staphylococcal
biofilms are also resistant to immune-mediated clearance [12, 13].
Overall, the biofilms can persist on biotic and abiotic surfaces
for prolonged periods of time by multiple mechanisms [14-19].
Unfortunately, there are currently no antimicrobial therapies
available that specifically target bacteria in biofilms, resulting
in significant health as well as economic impact [20, 21]. For
example, in patients with persistent biofilm infection of prosthetic
joints, either replacement of the infected joint or even amputation
of the limb may be the only viable options [22, 23]. Hence, novel
anti-biofilm therapies are urgently needed.

Antisense technology has been widely applied in the medical field
because of their ability to limit, and in some cases eliminate, the
expression of targeted genes through sequence-specific recognition
without much off-target effects. While antisense technology
has been used to block the expression of human genes in the
biomedical field, in microbiology they are used as an antimicrobial
agent for targeting the expression of specific gene(s) in pathogens.
Peptide nucleic acids (PNAs) are synthetic DNA mimics that have
a peptide backbone that replaces the sugar-phosphate backbone of
DNA, which confers excellent stability in vivo. They also bind to

target DNA or RNA sequences with a higher affinity than natural
nucleic acids and have been used in a variety of applications,
including inhibition of bacterial growth [24, 25]. Several studies
have tested the ability of PNAs to block the expression of specific
genes in S. aureus [26-30]. However, the effectiveness of PNA
to inhibit biofilm formation in S. aureus has not been studied
until recently. In this study, we have identified a novel PNA that
effectively inhibited S. aureus biofilm formation in vitro.

Materials and Methods
Strain and growth conditions

Throughout this study, a pathogenic S. aureus isolate that expresses
the luciferase gene and can also form biofilms (S. aureus P231) and
anon-biofilm forming S. epidermidis isolate were used. Expression
of the lux operon in S. aureus facilitates rapid screening of the
effect of PNAs on bacterial growth/viability using in vivo imaging
system “IVIS” [31, 32]. All bacterial strains were stored as 15-25
% (v/v) glycerol stocks at =70 °C as cryogenic stocks and plated
on tryptic soy agar (TSA) when needed. Cultures were revived
by streaking the stock onto TSA agar followed by overnight
incubation at 37 °C. Single colonies were picked to inoculate pre-
cultures in tryptic soy broth (TSB) with-1% glucose and incubated
at 37 °C and 220 rpm for 16—18 h in a shaking incubator.

Design and Synthesis of P-PNAs

The genome was searched for genes that are known or theorized
to be necessary in biofilm formation. The candidate bacterial
genes were selected by scanning among those relevant to biofilm
formation of S. aureus. Commonly targeted seven bacterial gene
functions and pathways are those essential for biofilm formation
such as adherence of cells to a surface and several global regulators.
Suitable antisense PNAs for target genes were obtained from
NCBI Database and designed to bind their translation initiation
regions within the coding strands of each mRNA, which covered
the AUG start codon [33, 34] (Table 1). Another two sequences
(scrambled PNAs) mismatching the base pair with the target genes
were designed as controls. All PNAs linked to a cell penetrating
peptide (CPP) were designed and submitted to a commercial
company (Table 1). All the P-PNAs were synthesized, purified,
and conjugated with either (RXR)4XB, or (KFF)3K bacterial
penetration peptide by PNA Bio (Newberry Park, CA).
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PNA Sequence
Genbank Gene Reference . Target DNA Sequence .
Function (5°-3°) with
Number and/or Name (5°-3%)
Attached CPP
AAD52055.1
. . It is involved in the synthesis of poly N-acetylglucosamine| TGTATTTATGTCT (RXR)4XB-
The intercellular adhesion for intercellular adhesion in S. aureus. TGACATATTTTCT
(ica) locus
NBR005743
The essential gene that encodes the factor that catalyzes
Cell wall/membrane/envelope . . o (RXR)4XB-
bi . the first step in the synthesis of the characteristic ATAAATCATGGA
iogenesis o o ) TCCTTGATTTAT
pentaglycine interpeptide in the S. aureus peptidoglycan.
(fimhb)
AF515775.1
An important transcriptional regulator that activates
Staphylococcus aureus variant the agr operon and modulates the expression of many TTTAAACATGGCA (RXR)4XB-
staphylococcal accessory regulator | yirylence genes and is a positive regulator of S. aureus TGCCATGTTTATA
regton PNAG-dependent biofilm formation.
(SarA)
AJ556795.1
Coordinate environmental signals with the internal
Staphvlococe N L . . . (RXR)4XB-
taphylococcus aureus SENSOr  regylatory circuitry governing virulence and other adaptiv) GAGCCGATAATG
histidine kinase CATTTTCGGCTC
processes
(SaeS)
AF189239.2
Plays a key role in regulating S. aureus virulence through
Staphylococcus aureus repressor of . . (KFF)3K-O-
. activation or repression of promoters that control AGAATAATGCA
toxins ) . ) TGCATTATTCT
expression of many critical virulence factors.
Rot (rof)
AF136709.1
Two-component system YycFG YycF binds to the upstream promoter regions of the (KFF)3K-O-
Staphylococcus aureus response target genes to positively and negatively regulate their AAGAGGTTAATG
lat. . CATTAACCTCTT
regulator expression.
YycF (yycF)
AF136709.1
Two-component system YycFG (KFF)3K-O-
Staphylococcus aureus histidine YycG is a sensor protein with histidine kinase activity GAAACGAATGA
ki TCATTCGTTTC
inase
YycG (yycG)
Scramble PNA Random (non-specific) NONE RXR)4XB- TTTTGCCAT
: (RXR)4XB-
Scramble PNA Random (non-specific) NONE
CCCTGATATA
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Cell Penetrating Peptide

membranes

Short peptides that can deliver PNAs across cellular

N/A (RXR)4XB

Table 1: Sequences of designed P-PNAs and CPP for Staphylococcus aureus.

Inhibitory activities of synthesized P-PNAS
Staphylococcus aureus biofilm formation

against

Briefly, frozen stock of S. aureus P231 was streaked on TSA
(Tryptic Soy Agar) plates to obtain single, well-isolated colonies.
Plates were incubated overnight at 37 °C with 5 % CO,. One
colony was inoculated to 10 ml of TSB (trypticase soya broth)
supplemented with 1 % glucose and incubated for 20-24 h at 37
°C in shaker at 200 rpm. The overnight cultures grown in TSB-
1 % glucose was diluted 180 folds (approximately 10> CFU/ml)
with 2x TSB-1 % glucose. Fifty microliters of the diluted cultures
were incubated with indicated concentrations of PNA in a volume
of 50 ul, in duplicates, in a 96-well, low adhesion, flat-bottomed
microtiter plates (cat. # 3474; Corning Inc., Corning, NY), making
the total volume per well to 100 ul. The plates were incubated in
a humidified incubator at 37 °C with 5 % CO,. To reduce edge
effects and evaporation, 200 pl TSB was added to circumferential
wells on the plate. For determining biofilm formation by crystal
violet (CV) staining, the plates were incubated for 48 hours, and
the liquid culture medium was removed by gently tapping the
plates on paper towel to remove planktonic bacteria. Subsequently,
200 pl 0.1 % aqueous CV was added to each well and incubated
for 10-15 minutes at room temperature. The plates were washed
by submerging the plates in a tray of water, filling the wells
and tapping the plates gently upside down on a stack of paper
towels. After 2 washes, 200 pl of 30 % glacial Acetic acid was
added to each well, incubated at room temperature for 10-15
mins to dissolve the biofilm-bound CV and the absorbance was
determined using a microtiter plate reader at 570 nm. The average
and standard deviation of the OD_ values obtained for each strain
were calculated [35]. For experiments with the bioluminescent
feature of S. aureus isolate, the plates were incubated for 24 h
before determining bioluminescence using IVIS (R) imaging
system.

Inhibitory activities of anti-sar4 P-PNA against S. aureus
biofilm formation on tygon tubing

The tygon catheter tubes mimics with an inner diameter of 1/16
in. and a wall thickness of 1/16 in, giving a total diameter of
3/16 in (Part No.5894K31, McMaster Carr, Santa Fe Springs,
CA, USA) [36, 37] were cut into 3.5 cm to 4 cm long segments
and sterilized by soaking in 10 % bleach for 15 minutes. Silicon
stoppers were also sterilized similarly. After sterilization, catheter
fragments and stoppers were washed with sterile distilled water
(diH,O) several times in a laminar flow hood and allowed to dry

prior to inoculation with S. aureus P231. For tygon biofilm assay,
50 ul of the bacteria (10° CFU/ml) was transferred into a low-
binding 1.5 ml microfuge tube and centrifuged at 13,300 rpm for 3
minutes. After aspirating the supernatant, the bacterial pellets were
resuspended in 50 pl anti-sar4 P-PNA (50 or 100 uM) in TSB-1 %
glucose and the mixes were applied into the lumen of the catheter
fragments. After incubation for 48 hours at 37 °C with 5 % CO,,
the liquid culture medium was removed from the catheter lumen
by gentle aspiration to remove planktonic bacteria. Then, 50 ul of
0.1 % aqueous CV was added to each lumen of the catheter and
incubated for 10-15 minutes at room temperature. The CV-stained
bacterial biofilm on the catheter pieces was washed several times
by pipetting with water. After washing, they were carefully dried
with a tissue and the catheter pieces were transferred to 96 well
flat bottom microtiter plates. To dissolve the biofilm bound CV, 50
ul of 30 % glacial acetic acid was added to the lumen of each the
catheter piece, incubated at room temperature for 10-15 minutes
and the absorbance was determined at 570 nm using a microtiter
plate reader.

Statistics

All statistical analyses were performed with Student’s two-
tailed t-test using Microsoft Excel (Microsoft Corp., Redmond,
WA) or using GraphPad Prism software (Version 10.4). P-values
of <0.05 were considered significant.

Results and Discussion

Biofilm formation by S. aureus is a complex process which is not
fully understood. However, several genes and pathways have been
shown to be critical in this process. Therefore, we hypothesized that
targeting important genes using cell-penetrating antisense PNAs
will be a viable approach to treat S. aureus biofilm infections. For
this, we first systematically reviewed the literature and identified
several candidate bacterial genes that have been shown to regulate
staphylococcal biofilm formation or critical for staphylococcal
growth and virulence. The icad gene, which plays a role in the
synthesis of poly-N-acetylglucosamine for intercellular adhesion,
has been reported to play an important role in biofilm formation
[38, 39]. The fmhB gene, encodes for the factor that catalyzes
the first step in the synthesis of the characteristic pentaglycine
interpeptide in the S. aureus peptidoglycan, which is involved in
wall biosynthesis [40]. Sar4 has been shown to be an important
transcriptional regulator that activates the agr operon and
modulates the expression of many virulence genes and is a positive
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regulator of PNAG-dependent biofilm formation of S. aureus [41-
44]. Another global autoinducer regulator, sae regulon, includes
both biofilm formation factors (i.e., Coa, Emp, Eap, FnBPA,
FnBPB, Hla, HIb) and biofilm degradation factors [45-50].

The DNA-binding protein Rot, which belongs to the sard
family of S. aureus regulators, controls S. aureus virulence by
activating or repressing promoters that regulate the expression of
several important virulence factors [51-52]. Several studies have
demonstrated a relationship between the presence of the Rot gene
and the formation of S. aureus biofilms [53]. One of the major
properties of S. aureus is that it can adapt to the environment by
coordinating gene expression thereby allowing it to withstand a
variety of environmental stresses. The two-component systems
(TCS), plays a central role in this process [54]. The YycFG TCS
regulates cellular physiology, structure and biofilm organization
[55]. The YycG TCS controls genes related to cell wall metabolism,
virulence regulation, biofilm formation, oxidation stress resistance
and antibiotic resistance through a direct or indirect regulation of
autolysins. It acts as a sensor protein kinase that automatically
phosphorylates a histidine residue in the dimerization domain
and then shifts the phosphate group to the aspartic acid residue
conserved in the regulatory domain of YycF. The upstream
promoter regions of the target genes can control the expression
of these genes either positively or negatively [56, 57]. Anti-sense
PNAs targeting these genes were synthesized and tested in in vitro
assays.

First, we tested whether the PNAs had direct bactericidal activity
in 96-well microtiter plate bioluminescence assay. The extent of
bioluminescence was comparable in all wells, when treated with
test PNAs, scrambled PNAs, cell-permeable peptide or medium
alone at concentrations ranging from 15 to 50 uM (Fig. 1). This
indicated that our PNAs are not bactericidal. Next, we tested the
ability of the compounds to specifically inhibit biofilm formation
in CV assay. In this assay, only anti-sar4 P-PNA exhibited the
strongest biofilm inhibitory effect at concentration of 50 uM or
higher. Biofilm formation was reduced by 95 % after 48 h of
treatment with anti-sar4 P-PNA at concentration 50 uM (Fig 2).
As expected, neither of the scrambled PNAs nor cell-permeable
peptide alone had any inhibitory effect. Interestingly, certain PNAs,
such as icad, fmhb and lower concentrations of sar4 appeared
to promote biofilm formation. While we do not understand the
mechanisms, it is possible that the PNAs may interact with the
extracellular DNA that is known to be present in the biofilm matrix
and promote biofilm formation.

Since only anti-sar4 P-PNA showed strong inhibitory activity
in microtiter plate assay, we next tested the ability of anti-sar4
P-PNA to inhibit S. aureus biofilm formation on tygon tubes. In
this assay, anti-sar4 P-PNA caused approximately 50 % inhibition
of biofilm formation of S. aureus strain P231 on the surface of
tygon catheter tubes at a concentration of 50 pM and over 95 %
inhibition at a concentration of 100 uM compared to the control
(Fig 3). The CPP alone had no inhibitory effect on biofilm
formation (Fig 3). In conclusion, we have designed a novel PNA
that significantly inhibited biofilm formation by pathogenic S.
aureus. However, there are some limitations associated with our
study. While anti-sar4 PNA clearly inhibited biofilm formation,
the mechanisms need to be worked out. Fully understanding the
molecular pathways regulated by sar4 that are important for
biofilm formation may lead to novel therapies to inhibit biofilm
formation. Once the PNA is tested in in vivo models, this could
be as an alternative and probably as a complementary therapeutic
strategy with broad spectrum antimicrobials.

Figure 1: Determination of direct antibacterial activity of PNAs.
To investigate whether the PNAs have direct antibacterial activity,
the S. aureus P231 bioluminescent strain was grown in microtiters
plates in the presence of various gene-specific PNAs, scrambled
PNAs or CPP (RXR)4XB) alone for 24 hours. The luminescence
intensities were calculated using IVIS system as described in
methods. The percent of inhibition of bioluminescence by the test
compounds was calculated by comparing the luminescence with
medium alone. The bars represent Mean + SE of two to three
independent experiments.
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Figure 2: Inhibition of S. aureus biofilm formation by PNAs. S. aureus P231 strain biofilms were grown in 96-well low binding
microtiter plate. Indicated concentrations of PNAs were added in duplicates and the extent of biofilm formation was determined by
crystal violet staining assay at 48 hours. (A) OD,,, values by crystal violet staining assay. (B) Percentage inhibition by PNAs compared
to medium alone. The bars represent Mean + SE of two to three independent experiments. * p<0.05
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Figure 3: Inhibition of biofilm formation by S. aureus P231 strain on tygon catheters by (RXR)4XB-linked anti-sar4 P-PNA. (A)
Biofilms of S. aureus P231 strain were grown for 48 h on the tygon catheter segments. (B) Crystal violet-stained biofilms of S. aureus
P321 on tygon catheter tube segments. (C) OD,,, values by Crystal violet staining to determine the extent of biofilm inhibition at 48
hours. Anti-sar4 P-PNA was tested at 50 and 100 uM and the control CPP was used at 30 uM. * p<0.05.

Studies with antisense peptide-PNAs targeting essential genes have shown growth inhibitory effects in S. aureus [27]. PNAs’ potential as
antibacterial agents has been thoroughly evaluated, and it has been found that design parameters like the base sequence, the location of
the membrane penetrating peptide, and the presence of a linker can affect the activity of P-PNAs. As a result, the most effective PNAs for
Gram-positive bacteria had a base pare length of 10 nucleotides, the most effective PNAs for mRNA regions that bound to the ribosomal
binding sequence of the mRNA (RBS region), and the PNA activity of different carrier agents produced distinct antibacterial effects on
both Gram-positive and Gram-negative bacteria [57].

7 Volume 8; Issue: 2

Infect Dis Diag Treat, an open access journal
ISSN: 2577-1515



Citation: Col NA, Rao J, Rajagopalan G, Sriranganathan N (2024) Design and Evaluation Novel Gene-Specific, Cell-Permeable Antisense Peptide
Nucleic Acids to Prevent Staphylococcus Aureus Biofilm Formation. Infect Dis Diag Treat 8: 270. DOI: 10.29011/2577-1515.100270.

Conclusion

In conclusion, we have designed a novel PNA that significantly
inhibited biofilm formation by pathogenic S. aureus. Once the
PNA is tested in in vivo models, this could be as an alternative
and probably as a complementary therapeutic strategy with broad
spectrum antimicrobials.
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