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Abstract
Purpose: Deletions of 2q21 are known to occur rarely in prostate cancer but the clinical relevance is still unclear.

Methods: To evaluate the clinical relevance of this deletion, a tissue microarray including more than 12,000 prostate cancers 
with clinical follow-up data was analyzed by dual labeling in-situ hybridization employing probes for 2q21 and centromere 2.

Results: Deletions of 2q21 were found in 9% of 5,945 analyzable cancers. 2q21 deletions were linked to unfavorable 
tumor phenotype, including advanced tumor stage (p=0.0032), high Gleason score (p<0.0001), increased cell proliferation 
(p<0.0001), elevated preoperative PSA levels (p<0.0001), and early PSA recurrence (p=0.0002). 2q21 deletions were more 
frequent in ERG-negative than in ERG-positive cancers. Only 6% of ERG-positive cancers were 2q21-deleted, while 12% of 
ERG-negative cancers harbored 2q21 deletions. Separate analyses of ERG-positive and ERG-negative cancers revealed that all 
associations between 2q21 deletions and unfavorable tumor phenotype or prognosis were driven by ERG-negative cancers. In 
ERG-negative cancers - but not in ERG-positive tumors or in the entire patient cohort - the prognostic impact of 2q deletions 
was independent from established pre- and postoperative prognostic parameters (p≤0.05).

Conclusion: In summary, our findings identify 2q deletion as an independent prognostic marker in the subgroup of ERG-
negative prostate cancers. As FISH is precise analysis method delivering yes/no answers, it appears possible that 2q21 deletions 
may become a component for future multiparametric prognostic tests panels.
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Introduction
Prostate cancer is the second most common cancer 

worldwide with nearly 1,3 million diagnosed cases in 2018 and the 
fifth leading cause of cancer death [1]. Most prostate tumors grow 
slowly and may need minimal or even no treatment. However, 
some cancers are highly aggressive, spread quickly, and treatment 
is essential [2-4]. Established pretreatment prognostic parameters 
such as Gleason grade and tumor extent on biopsies, are statistically 
powerful but not always sufficient for optimal individual treatment 
decisions. As screening strategies identify prostate cancers already 
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at early stages of the disease, it becomes increasingly important to avoid overtreatment of patients with less aggressive disease [1]. 
Accordingly, it will be important to establish molecular markers enabling distinction between indolent and aggressive forms of the 
disease. Deletions of variable size at multiple chromosomal loci are a hallmark of prostate cancer. Frequently deleted regions for 
example include 5q21 (CHD1), 6q, 8p, 10q23 (PTEN), 16q, and 17p13 (TP53). Studies have shown that deletions in these regions occur 
in 10% to 40% of all prostate cancers and that all of them are strongly associated with an aggressive phenotype [5-12]. Deletions of 
chromosome 2q have been reported to occur in 2% to 42% in studies examining 20 to 622 prostate cancers by Array-Based Comparative 
Genomic Hybridization (aCGH), classical CGH, and Loss Of Heterozygosity (LOH) analysis [11-20]. Published data mapping 2q 
deletions described a small commonly deleted region on 2q21 [12,21-23]. Only one study analyzed the prognostic impact of 2q deletions 
but found no relationship to patient prognosis in a series of 20 prostate cancers [16]. To clarify the clinical relevance of 2q deletion in 
prostate cancer, a prostate cancer Tissue Microarray (TMA) with more than 12,000 prostate cancers with available follow-up data was 
analyzed by Fluorescence In-Situ Hybridization (FISH) using probes for 2q21 and centromere 2.

Materials and Methods

Patients. Radical prostatectomy specimens were available from 12,427 patients, undergoing surgery between 1992 and 2012 
at the Department of Urology and the Martini Clinic at the University Medical Center Hamburg-Eppendorf. Histo-pathological data 
was retrieved from the patient files, including tumor stage, nodal stage and stage of the resection margin. In addition to the traditional 
Gleason categories, “quantitative” Gleason grading was performed as described before [24]. Follow-up data were available for a total 
of 11,665 patients with a median follow-up of 36 months (range: 1 to 241 months; Table 1). Prostate-Specific Antigen (PSA) values 
were measured following surgery and PSA recurrence was defined as the time point when postoperative PSA was at least 0.2 ng/ml and 
increasing at subsequent measurements. All prostate specimens were diagnosed according to a standard procedure, including complete 
embedding of the entire prostate for histological analysis [25]. The TMA manufacturing process was described earlier in detail [26]. In 
short, one 0.6 mm core was taken from a representative tissue block from each patient. The molecular database attached to this TMA 
includes data on ERG expression in 10,678 [27,28], ERG rearrangement by FISH analysis in 7,099 (extended from [27,28]), and cell 
proliferation measured by Ki67 labeling index (Ki67LI) in 7,008 (extended from [29]) cancers.

No. of patients (%)

  Study cohort on TMA (n=12427) Biochemical relapse among categories

Follow-up (mo)

n 11665 (93.9%) 2769 (23.7%)

Mean 48.9 -

Median 36.4 -

Age (y)

≤50 334 (2.7%) 81 (24.3%)

51-59 3061 (24.8%) 705 (23.0%)

60-69 7188 (58.2%) 1610 (22.4%)

≥70 1761 (14.3%) 370 (21.0%)

Pre-operative PSA (ng/ml)

<4 1585 (12.9%) 242 (15.3%)

4-10 7480 (60.9%) 1355 (18.1%)

10-20 2412 (19.6%) 737 (30.6%)

>20 812 (6.6%) 397 (48.9%)

pT category (AJCC 2002)



Citation: Weidemann S, Kluth M, Cölsch A, Dum D, Hinsch A, et al. (2021) Deletion of 2q21 Characterizes a Small Subgroup of Ag-
gressive ERG-Negative Prostate Cancers. J Surg 6: 1366. DOI: 10.29011/2575-9760.001366

3 Volume 06; Issue 03

J Surg, an open access journal
ISSN: 2575-9760

pT2 8187 (66.2%) 1095 (13.4%)

pT3a 2660 (21.5%) 817 (30.7%)

pT3b 1465 (11.8%) 796 (54.3%)

pT4 63 (0.5%) 51 (81.0%)

Gleason grade 

≤3+3 2848 (22.9%) 234 (8.2%)

3+4 6679 (53.8%) 1240 (18.6%)

3+4 Tert.5 433 (3.5%) 115 (26.6%)

4+3 1210 (9.7%) 576 (47.6%)

4+3 Tert.5 646 (5.2%) 317 (49.1%)

≥4+4 596 (4.8%) 348 (58.4%)

pN category

pN0 6970 (91.0%) 1636 (23.5%)

pN+ 693 (9.0%) 393 (56.7%)

Resection margin status

Negative 9990 (81.9%) 1848 (18.5%)

Positive 2211 (18.1%) 853 (38.6%)

NOTE: Numbers do not always add up to 12427 in the different categories because of cases with missing data. Abbreviation: AJCC, American Joint 
Committee on Cancer.

Table 1: Patient Cohort.

Fluorescence in-situ hybridization. Four micrometer TMA sections were used for FISH. For proteolytic slide pretreatment, a 
commercial kit was used (paraffin pretreatment reagent kit; Abbott, Chicago, USA) TMA sections were deparaffinized, air-dried, and 
dehydrated in 70%, 85%, and 100% ethanol, followed by denaturation for 5 min at 74°C in 70% formamide 2x SSC solution. The 
FISH probe set consisted of a spectrum-green labeled 2q21 (CCNT2) probe (made from a mixture of BAC RP11-355K12 and BAC 
RP11-383L16), and a commercial spectrum-orange labeled centromere 2 probe (#06J36-027; Abbott, Chicago, USA) as a reference. 
Hybridization was overnight at 37°C in a humidified chamber. Slides were subsequently washed and counterstained with 0.2µmol/L 
4’-6-diamidino-2-phenylindole in antifade solution. Stained slides were manually interpreted with an epifluorescence microscope, and 
the predominant FISH signal numbers were recorded in each tissue spot as follow: Homozygous 2q21 deletion: complete absence of 2q21 
FISH probe signals in ≥60% of tumor nuclei, with the presence of one or two 2q21 FISH signals in adjacent normal cells. Tissue spots 
with a lack of 2q21 signals in all (tumor and normal cells) or lack of any normal cells as an internal control for successful hybridization 
of the 2q21 probe were excluded from analysis. Heterozygous 2q21 deletion: presence of fewer 2q21 signals than centromere 2 probe 
signals of ≥60% tumor nuclei (Figure 1). These thresholds were based on a previous study [10].
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Figure 1: Example of 2q21 FISH findings.

Statistics: For statistical analysis, the JMP 14.0 software (SAS 
Institute Inc., NC, USA) was used. Contingency tables and Chi-
square (Likelihood) tests were utilized to study the relationship 
between 2q21 deletion and categorical clinico-pathological 
variables. Kaplan Meier curves were generated for PSA recurrence 
free survival. The log-Rank test was applied to test the significance 
of differences between stratified survival functions. Cox 
proportional hazards regression analysis was performed to test the 
statistical independence and significance between pathological, 
molecular, and clinical variables.

Results

Technical aspects. 5,945 of 12,427 (47.8%) cancers were 
analyzable in 2q21 FISH. Analysis of the remaining 6,482 tumors 
was not successful because of weak or absent 2q21 and centromere 
2 signals, lack of unequivocal tumor cells in the tissue spot, or 
missing tissue spots on the TMA section. 

2q21 deletion and TMPRSS2:ERG fusion. Data on 
TMPRSS2:ERG fusion status obtained by FISH were available 
from 4,458 and by immunohistochemistry (IHC) from 5,208 

tumors with evaluable 2q21 data. Data on both ERG FISH and 
IHC were available from 4,289 cancers, and an identical result 
was found in 4,121 (96%). Deletions of 2q21 were significantly 
linked to absence of the TMPRSS2:ERG fusion. 2q21 deletions 
were seen in 11.5% (IHC) and 11.9% (FISH) of cancers without 
TMPRSS2:ERG fusion, but found in only 6.3% (IHC) and 6.1% 
(FISH) of cancers with TMPRSS2:ERG fusion (p<0.0001 each; 
Figure 2). 2q21 deletion and cancer phenotype. 2q21 deletion 
was always heterozygous and found in 8.6% (n=514) of 5,945 
analyzable prostate cancers. 2q21 deletions were strongly linked 
to adverse tumor features (Table 2), including advanced tumor 
stage (p=0.0032), high Gleason grade (p<0.0001), and increased 
preoperative PSA levels (p<0.0001). All statistical associations 
with unfavorable phenotype were still found in ERG-negative 
cancers (p≤0.02), whereas in ERG-positive cancers only the 
Gleason grade (p=0.0032) was associated with 2q21 deletions 
(Table 2). 2q21 deletions were also linked to increased cell 
proliferation (p<0.0001; Table 3). This was again more prominent 
in ERG-negative (p<0.0001) than in ERG-positive cancers 
(p=0.0333). 

Figure 2: 2q21 deletion and TMPRSS2:ERG fusion.
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All cancers ERG-negative cancers ERG-positive cancers

  n 2q21 
deletion (%) p value n 2q21 deletion 

(%) p value n 2q21 deletion 
(%) p value

5945 8.6 2869 11.5 2337 6.3

Tumor stage 

pT2 3781 7.7 0.0032 1907 10.2 0.0119 1352 5.6 0.1306

pT3a 1336 10.5 578 14.4 629 8.0

pT3b-4 806 10.0 379 13.5 347 6.1

Gleason grade

≤3+3 1281 4.5 <0.0001 588 5.4 <0.0001 450 3.8 0.0354

3+4 3030 8.3 1440 10.7 1270 6.1

3+4 Tert. 5 223 9.0 125 12.0 79 6.3

4+3 560 13.9 293 19.1 217 9.2

4+3 Tert. 5 346 14.5 172 18.0 144 10.4

≥4+4 276 16.3 152 22.4 88 6.8

Lymph node metastasis

N0 3267 9.8 0.5636 1634 13.0 0.7797 1296 6.8 0.1436

N+ 384 8.9 174 13.8 173 4.1

PSA Level (ng/μl)

<4 726 6.8 <0.0001 304 9.5 0.0078 315 6.0 0.2824

4-10 3536 7.8 1690 10.2 1403 5.8

10-20 1197 11.3 634 14.8 434 7.1

>20 415 12.1 217 14.3 155 9.7

Surgical margin

negative 4681 8.5 0.4148 2261 11.6 0.5475 1816 5.9 0.1787

positive 1147 9.2 559 10.7 473 7.6

Table 2: 2q21 deletion and prostate cancer phenotype.

2q21 numbers Ki67LI (mean±SD )

all cancers (p<0.0001)
normal 3193 3.0±0.05

deletion 340 4.1±0.1

ERG-negative cancers (p<0.0001)
normal 1633 2.8±0.1

deletion 231 4.3±0.2

ERG-positive cancers (p=0.0333)
normal 1499 3.1±0.1

deletion 106 3.6±0.2

Table 3: 2q21 deletion and cancer cell proliferation.
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2q21 deletion and patient prognosis. Deletions of 2q21 were significantly associated with early biochemical recurrence in the 
subset of 5,322 cancers with available follow-up data (p=0.0002; Figure 3). This association was driven by the subset of ERG-negative 
cancers (p<0.0001), while 2q21 deletions lacked prognostic relevance in ERG-positive cancers (p=0.8548). However, 2q21 deletions 
lacked prognostic significance in subgroups of identical traditional or quantitative Gleason grade (Figure 4). This also applied to the 
subgroup of ERG-negative cancers (Figure 5).

Figure 3: 2q21 deletion and patient prognosis.
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Figure 4: 2q deletion and patient prognosis in tumors with identical classical and quantitative Gleason grade groups.
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Figure 5: 2q deletion and patient prognosis in ERG-negative tumors with identical classical and quantitative Gleason grade groups.
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Multivariate analyses. The prognostic relevance of 2q21 deletion was further assessed in four different multivariate analyses, 
including established pre- and postoperative prognostic parameters. Scenario 1 investigated the postoperatively available prognostic 
parameters pathological tumor stage (pT), pathological lymph node status (pN), surgical margin status, preoperative PSA value and 
prostatectomy Gleason grade. In scenario 2, nodal metastasis was excluded from the postoperatively available set of data, because lymph 
node dissection is not standardized and preferably applied in high-risk cancers, which may introduce a statistical bias. The next two 
scenarios were to model the preoperative situation to the best possible extent. Scenario 3 included deletion status of 2q21, preoperative 
PSA value, clinical tumor stage (cT) and Gleason grade obtained on the prostatectomy specimen. It is of note, that postoperative 
determination of a tumors Gleason grade is usually “better” than the preoperatively determined Gleason grade (subjected to sampling 
errors and consequently under-grading in more than one third of cases). Therefore, in scenario 4, the preoperative Gleason grade 
obtained on the original biopsy was combined with preoperative PSA value, cT and 2q21 deletion status. For all scenarios, 2q21 deletion 
predicted PSA recurrence independently in the subgroup of ERG-negative cancers (p≤0.05; Table 4). 

Sce-
nario

analyz-
able (n)

p -value

preoperative 
PSA-Level pT Stage cT 

Stage
Gleason-grade prosta-
tectomy

Gleason 
grade 
biopsy

N-Stage R-Status 2q21 dele-
tion

all cancers

1 3152 <0.0001 <0.0001 <0.0001 <0.0001 0.0714 0.4567
2 5176 <0.0001 <0.0001 <0.0001 <0.0001 0.6102
3 5115 <0.0001 <0.0001 <0.0001 0.7661
4 5038 <0.0001 <0.0001 <0.0001 0.356

ERG-
negative 
cancers

1 1577 <0.0001 <0.0001 <0.0001 0.0002 0.0497 0.0483
2 2504 <0.0001 <0.0001 <0.0001 0.0023 0.0564
3 2497 <0.0001 <0.0001 <0.0001 0.0201
4 2468 <0.0001 <0.0001 <0.0001 0.0285

ERG-
positive 
cancers

1 1262 0.0052 <0.0001 <0.0001 0.1062 0.9173 0.1113
2 2032 0.001 <0.0001 <0.0001 0.2303 0.2309
3 1983 <0.0001 <0.0001 <0.0001 0.2813
4 1943 <0.0001 0.0001 <0.0001 0.2295

Table 4: Multivariate analysis.

Discussion 

Our study shows that 2q deletions characterize a small 
subgroup of aggressive ERG-negative prostate cancers.

A FISH probe targeting CCNT2 was used for 2q deletion 
analysis, because this gene is located in the center of the 
recurrently deleted 2q21 region that was thoroughly mapped in 
previous CGH, and aCGH studies [12,21-23]. The proportion of 
2q21 deleted prostate cancers was 9% in our FISH analysis. This 
was lower than in earlier studies describing 2q21 deletions in 2%-
42% by CGH [11,13-15,17], 29%-40% by aCGH [20,16,12,19], 
and 29% by LOH analysis [18]. The TCGA database containing 
data obtained by Next Generation Sequencing (NGS) describe 
2q21 deletions in 14% of 818 analyzed prostate cancers [30]. It 
is of note, that FISH represents the gold standard for deletion 
detection. FISH enables a precise cell by cell analysis of the copy 
number of genomic regions of interest. FISH is not dependent on 
the presence and quantity of inflammatory or stroma cells. Some 
“false deletions” can, however, be assumed in FISH analyses as 
some signals are always lost due to truncated cell nuclei that are 

incompletely represented on a tissue slide measuring only 3-4 µm 
in thickness. A rigid cut-off of 60% of tumor cells having less 
2q21 than centromere 2 signals was thus requested in this project 
to define 2q21 deleted tumors. This is based on the assumption that 
relevant intratumoral heterogeneity will not occur within a TMA 
spot measuring 0.6mm in diameter. In an earlier study, we had 
found a 100% concordance between FISH and array CGH data for 
identifying PTEN deletions using this definition for deletion [10].

Deletions of 2q21 were significantly linked to an adverse 
prostate cancer phenotype. The one previous study interrogating 
the prognostic role of 2q deletions only involved 20 cancers and 
could not find a link to poor outcome [16]. That deletions of 2q21 
are related to poor patient prognosis is not surprising, however. 
Using the same prostate cancer TMA as in this study, our group 
had earlier investigated deletions of 3p13 [22], 5q21 [5], 6q15 [8], 
8p21 [6], PTEN [10], 12p13 [31], 13q14 [32], 16q23 [9], TP53 [7] 
and 18q24 [33] and found that all of them were significantly linked 
to unfavorable tumor phenotype and poor prognosis. As for 2q21, 
a clear-cut target tumor suppressor gene of which inactivation 
drives tumor progression and poor prognosis is not known for 
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most of these deletions. It is assumed, that haplo-insufficiency 
is the most likely cause for the link between all these deletions 
and patient outcome. That a lack of one allele can contribute to 
tumor development even in case of an intact second allele has for 
example been shown for p27Kip1, TP53, DMP1, NF1,  and PTEN 
(reviewed in [34]). It is thus expected, that adequate function of 
many more genes requires presence of two intact gene copies [35]. 
Putative tumor suppressor genes on 2q for example include FHL2 
(2q12.2) [36], RAB6C (2q21.1) [37], MCM6 (2q21.3) [38], ZRNB3 
(2q21.3) [39], RPRM (2q23.3) [40], RIF1 (2q23.3) [41], STK17B 
(2q32.3) [42], TMEFF2 (2q32.3) [43], CASP8 (2q33.1) [44], CD28 
(2q32.2) [45], and BOK (2q37.3) [46]. Most likely, deletions result 
in cancer relevant dysfunctions of multiple genes. The larger a 
deletion is, the higher the number of potentially haplo-insufficient 
genes with a potential tumor suppressive role. Accordingly, it was 
shown for some chromosomal loci that prognosis deteriorates with 
increasing deletion length [47].

The TMPRSS2:ERG fusion represents the most common 
genetic alteration in prostate cancer and occurs in approximately 
50% of tumors [27]. As a result of this gene fusion the transcription 
factor ERG comes under control of the androgen regulated 
TMPRSS2 promoter and is expressed in prostate cancer cells 
[48]. The fusion results in overexpression of the transcription 
factor ERG which by itself has no prognostic relevance [27]. 
However, ERG modulates more than 1,600 genes in prostate 
epithelial cells [49,50]. Thus, the ERG status modifies the cellular 
microenvironment which might modify the prognostic impact of 
other molecular features as well as the likelihood of secondary 
events to occur. This particularly applies for chromosomal deletions 
most of which show a predilection for either ERG-positive or ERG-
negative cancers. For example, PTEN and 3p deletions are linked 
to ERG positivity [10,12,22] and 5q and 6q deletions are tight to 
ERG negativity [5,8,51]. For 5q21 deletions, it was found that a 
reduced expression of Chromodomain-Helicase-DNA-Binding 
Protein 1 (CHD1) located at 5q21 abrogate androgen signaling and 
therefore impedes development of the TMPRSS2:ERG fusion [5]. 
It is possible that a similarly mechanism also exist for 2q deleted 
genes. The mechanisms for this are unknown. There are, however, 
2q genes known to play a role in the regulation of the androgen 
receptor signaling such as FHL2 and IL-1ß at 2q14 [52,53].

The prognostic role of 2q deletions was completely 
limited to ERG-negative cancers. In this subgroup, however, the 
influence on prognosis was strong and independent of established 
prognostic parameters irrespective of whether preoperatively or 
postoperatively available parameters were included into statistical 
analyses. This suggest a potential clinical utility of 2q deletion 
analysis in ERG-negative cancer. Multiple other molecular 
features have earlier shown to be prognostic either in ERG-positive 
[22,54,55] or in ERG-negative [56-58] prostate cancers but not 

in both molecularly defined subgroups. This observation limits 
the feasibility of one molecular test for prostate cancer prognosis 
that is equally applicable to all patients. That 2q deletions did not 
show prognostic impact in ERG-negative cancers with identical 
traditional and quantitative Gleason grade demonstrates the strength 
of the Gleason grading and shows how difficult it is for a molecular 
prognostic parameter to outperform tumor morphology. The 
Gleason score is the strongest preoperatively available prognostic 
parameter. However, Gleason grading suffers from interobserver 
variability of up to 40%, even between expert pathologists [59]. 
pT and pN category are not decisive for initial treatment decisions, 
because they can only be determined after surgery and depend on 
the thoroughness of the macroscopic and microscopic analysis 
[60]. Future prognostic biomarkers for prostate cancer must not 
only be independent of currently established factors but better 
reproducible and thus more reliable. In principle, FISH analysis is 
optimally suited for diagnostic testing as it provides unequivocal 
yes/no answers. A future prognostic FISH test - in particular if 
designed for ERG-negative cancers - may include a probe for 2q21 
together with other frequently deleted loci.

Conclusion
In summary, the results of our study identify 2q21 deletion 

as a rare aberration in prostate cancer that preferably occurs in 
ERG-negative cancers and which is strongly linked to patient 
outcome in this patient subgroup.
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