

Short Commentary

Cummins JM. J Vaccines Immunol: JVII-131.
DOI: 10.29011/2575-789X. 000031

Control of Foot-and-Mouth Disease When Vaccines are Not Available

Joseph M. Cummins*

Bomunity Ltd Co, Palladium Lane, USA

***Corresponding author:** Joseph M. Cummins, Bomunity Ltd Co, 17653 Palladium Lane, Edmond, OK 73012, USA. Tel: +18063247428; Email: shadynookfarms@hotmail.com

Citation: Cummins JM (2018) Control of Foot-and-Mouth Disease When Vaccines are Not Available. J Vaccines Immunol: JVII-131. DOI: 10.29011/2575-789X. 000031

Received Date: 18 June, 2018; **Accepted Date:** 03 July, 2018; **Published Date:** 09 July, 2018

Commentary

Vaccination and depopulation are the methods for control of Foot-and-Mouth Disease (FMD). Another tool is needed to manage FMD Virus (FMDV) if sero-type vaccines are unavailable. The USDA plans to vaccinate cattle if there is a major FMDV outbreak in the USA, but this plan is hampered by the lack of a stockpile of FMDV vaccines to treat millions of animals in a timely fashion. In the absence of FMDV specific vaccines strategies to induce or administer interferon (IFN) might limit FMDV replication and disease in cattle and swine. A group of USDA Animal Research Service (ARS) scientists have reported that the FMDV establishes infection in susceptible cells/hosts by its ability to subvert key host defenses, specifically the inducible IFN response. FMDV inhibits production of IFN alpha (α) [1] and blocks a key IFN-inducible, antiviral pathway, i.e.- Double-Stranded RNA (dsRNA) - dependent Protein Kinase R (PKR) [2]. Moreover, FMD Virion Protein 1 (VP1) has been specifically identified as a viral-origin IFN suppressor molecule by interacting with soluble resistance-related calcium protein sorcin [3]. Since a key FMDV control method by host cells is suppression of IFN α production by FMDV-infected cells then exogenous treatment with IFN α or induction of endogenous IFN should help control FMD. Indeed, this vulnerability of FMDV to IFN has led to a novel viral disease control strategy using recombinant replication-defective human adenovirus 5 vector containing various species IFN genes. Results varied by species.

ARS scientists reported that a human adenovirus type 5 vector containing porcine IFN α (Ad5-pIFN α) injected into swine induced IFN production in these swine and completely protected them from FMD when challenged with virulent FMDV [4]. These swine remained FMD-asymptomatic, did not develop viremia nor did serum contain antibodies against viral nonstructural FMDV proteins. ARS scientists reported that Ad5-pIFN α given to pigs 1 to 5 but not 7 days prior to challenge with virulent FMDV were completely protected from FMD-disease. Pigs were

protected even two days after IFN was no longer detected in the blood, likely because of the induction of IFN stimulated genes (ISG) [5,6]. This same research group reported that intramuscular (IM) injection of Ad5pIFN α protected swine against multiple serotypes of FMDV. IM inoculation of a 10-fold lower dose of Ad5-pIFN α at four sites in the neck compared with one site in the hind leg protected swine against FMDV challenge [7].

A fusion protein of porcine IFN regulatory factors (IRF) 7 and 3 delivered by an adenovirus vector [ad5-poIRF7/3(5D)] is an effective treatment to prevent FMD in swine. Animal pretreated with ad5-poIRF7/3(5D) 1 day before being exposed to FMDV and were completely protected from viral replication and clinical disease [8]. The doses of ad5-poIRF7/3(5D) required for protection were lower than those previously reported for similar approaches using Ad5 vectors delivering type I, II, or III IFN.

When the Ad5-pIFN α vectored porcine IFN delivery system was injected into cattle, Ad5-pIFN α , provided partial *in vivo* protection by delaying viremia for one day and decreasing vesicle formulation [5] in challenged cattle. Subsequently, the ARS identified bovine IFN lambda-3 (boIFN- λ 3) and demonstrated that expression of this molecule using recombinant replication-defective human Ad5 vector, Ad5boIFN- λ 3 exhibited FMDV-antiviral activity *in vitro* and *in vivo*. Inoculation of cattle with Ad5-boIFN λ 3 induced systemic antiviral activity and up-regulation of ISG expression in the upper respiratory airways and the skin. ARS demonstrated that FMD disease could be delayed for at least 6 days when cattle were inoculated with Ad5-boIFN λ 3 and challenged one day later with virulent FMDV.

The delay in the appearance of disease was significantly prolonged when treated cattle were challenged by aerosol of FMDV; clinical signs of FMD-disease, viremia, or viral shedding in nasal swabs were not observed in Ad5-boIFN- λ 3-treated cattle for at least nine days after challenge [9].

Murine knock out models confirm the importance of the ISG IP-10 for FMDV resistance. Mice were screened for 86 genes and significant up-regulation was reported in 36 of the 86 genes at 3, 6 and/or 24 hours. The ISG IP-10 was up-regulated greater in mice than any other gene. The authors acquired IP-10 knockout mice and showed that only 30% of knockout mice survived FMD compared to 100% survival of mice with IP-10 intact [10]. FMDV inhibition *in vivo* by IFN has been known for 40 years. IFN-induced in the nasal secretions (NS) of cattle by Infectious Bovine Rhinotracheitis (IBR) virus given intranasally provided protection against FMDV challenge [11]. One or 2 days after intranasal vaccination with IBR virus, calves were challenged with FMDV. IFN was detected in the NS within 24 hours and for 10 days after IBR virus inoculation. Vaccinated calves had a milder course of FMD and greater than a 99% reduction in NS FMDV.

Vaccines, Induction of the IFN Response and Protection Against FMDV

When studying FMDV transmission from carrier to susceptible cattle, carriers of FMDV were inoculated intranasally with IBR virus to create a stress which might increase excretion of FMDV from carrier cattle. However, FMDV was not detected in esophageal-pharyngeal fluid of the 2 carrier animals a day after IBR virus inoculation and was not detected again during the 4-week sampling period [12]. IFN is induced in the NS of feedlot calves by modified live intranasal IBR viral vaccine [13,14]. Cattle given Coital Vesicular Exanthema Virus (CVEV) before inoculation with FMDV developed a milder form of FMD and developed FMD later than control calves [15]. The induction of IFN by the CVEV was perhaps responsible for the protection noted. If specific FMDV vaccine is not available, modified live IBR viral vaccines (already USDA-approved for cattle use) can be given to induce IFN to possibly help animals limit the severity of FMD.

Another animal viral vaccine in the USA that can induce intranasal IFN is a bluetongue virus (BTV) vaccine USDA-approved for sheep. A safety study of sheep BTV vaccine was conducted in cattle [16]. Given intranasally, the BTV vaccine was safe and induced small concentrations of NS IFN. Swine were not given either IBR virus or BTV vaccines, but an inexpensive study would ascertain the safety and efficacy of either vaccine in pigs challenged with FMDV.

Viral inducers of IFN in cattle with FMD agrees with the successful use of oral synthetic IFN inducers which protected mice from a subsequent infection with FMDV. Richmond and Campbell reported that an oral IFN inducer protected mice when given 2, 24 or 48 hours before FMDV inoculation and another inducer protected mice when given 18 hours before FMDV [17]. A single injection into mice of 150 µg of the synthetic IFN inducer polyribonosinic polyribocytidyllic acid (PolyI: C) 18 hours before a challenge

with 100 LD50 of FMDV was 100% protective [18]. PolyI: C is too toxic in cattle to be used in the control of FMD [19-21] but in pigs, PolyI: C was excellent in helping protect against FMD [22,23]. Various concentrations of PolyI: C were given intravenously to 11 calves (0.25 - 4 mg/kg weight) and 13 goats (1-4 mg/kg). It appears, except in pigs, the chemical inducers of IFN are too toxic to be useful in the management of FMD. This is in contrast to the control of FMDV reported from viral inducers of IFN or the administration of the IFN gene to livestock [24,25].

The oral delivery to animals of natural human IFN α (HuIFN α), we believe, has not been tested in FMD. However, oral delivery of HuIFN α is reported to be safe and efficacious in cattle with shipping fever or challenged with virulent IBR virus or *Theileria parva* [26-29]. Since the use of low-dose HuIFN α cost only pennies per dose, is easy-to-administer and has proven useful in other livestock diseases, it seems reasonable to test oral HuIFN α in FMD. In a study of 7,000 feeder cattle, a single dose of orally administered HuIFN α (0.7 International Units [IU]/kg body weight [BW]) at the time of diagnosis of respiratory disease, given with antibiotics, reduced mortality significantly ($p<0.001$), when compared to feeder calves given placebo and antibiotics [27]. When calves were given HuIFN α at 0.0, 0.05, 0.5 or 5.0 IU/kg bw for 4 consecutive days, starting 2 days before a virulent IBR virus challenge, those calves given 0.05 IU/kg bw had significantly ($P<0.05$) greater weight gain after 25 days and fewer days of fever ($>40^{\circ}\text{C}$) [27]. In studies of naturally occurring shipping fever, oral HuIFN α given for 3 days before shipping, or once after arrival, improved weight gain or reduced illness [28]. In a study of calves challenged with *Theileria parva*, the causative agent of East Coast Fever, some calves given oral HuIFN α survived an otherwise fatal challenge [29].

Does IFN α given orally modulate expression of ISG *in vivo*? It has been reported that injected IFN α or IFN α given orally up-regulates Mx (a type I IFN specific induced protein) in mice and humans [30], 2'5' adenylate synthetase in mice and guinea pigs [31-33] and other genes in humans [33] and mice [34,35]. ISG are up-regulated within a few hours after oral IFN α administration [36,37]. A 15kDa protein (ISG-15) is up-regulated in human buccal epithelial cells *in vivo* and *in vitro* with a peak level of ISG-15 detected 2 hours after oral HuIFN α administration [35]. Up-regulation of Mx proteins was detected in the spleen of mice, and in the peripheral blood mononuclear cells of humans, 2-4 hours after murine IFN α or HuIFN α , respectively, were ingested [30]. These data demonstrate that orally administered IFN α has rapid and systemic biological effects in animals and humans.

The testing of orally administered IFN α to help control FMDV in an emergency is recommended. The IFNs are widely available in purified form as both naturally occurring and as recombinant molecules. An important facet of the IFNs is the fact that the

IFN α family is not species-specific in action. Cells of human origin are protected by IFN from animal origin and animal cells are protected by IFN of human origin. Bovine IFN is active on primate [38,39], porcine [40] and human cell cultures [40]. Porcine IFN is active in human cells [41]. Human IFN α is active on porcine [42], bovine [42-45], and feline [46] cells. Within 8 hours, 50 and 200 units of oral bovine IFN α induced significant ($P < 0.05$) changes in expression of 41 of 92 tested autoimmune and inflammatory response-associated genes. These data suggest that orally administered IFN α in cattle provided short-term antiviral immunity [47].

Testing will probably show that IFN α (in rations or water) will supplement production of endogenous IFN resulting in significant protection against FMDV. The US government has maintained a FMD free status since the last outbreak of FMD in 1929. The last outbreak in Canada was 1952 and in Mexico in 1954. It has now been more than 60 years since FMD occurred in North America. The problem facing the government and the livestock industry is how to deal with FMDV if it is introduced on purpose. When a small outbreak of FMD occurs, USDA, APHIS plans to stop all animal transportation, slaughter and dispose of infected and exposed animals, and to clean and disinfect premises in contact with infected animals. The plans of APHIS will successfully eliminate FMD if it is accidentally introduced into a single location in the US.

However, if someone repeatedly introduces one or more serotypes of FMDV at multiple sites, the eradication plans of APHIS cannot succeed. At some point the cost of eradication will exceed the benefit of eradication. Too many of the 97 million cattle and 60 million hogs will be killed in an attempt to eradicate FMDV repeatedly introduced. Someone may force the US livestock industry to live with FMDV. Vaccination and immunomodulation using IFN are the tools that may help the livestock industry survive FMD..

References

1. Chinsangaram J, Piccone ME, Grubman MJ (1999) Ability of foot-and-mouth disease virus to form plaques in cell culture is associated with suppression of alpha/beta interferon. *J Virology* 73: 9891-9898.
2. Chinsangaram J, Koster M, Grubman MJ (2001) Inhibition of L-depleted foot-and-mouth disease virus replication by alpha/beta interferon involved double stranded RNA-dependent protein kinase. *J Virology* 75: 5498-5503.
3. Xiaying Li, Wang L, Liu J, Li Z, Wang Y, et al. (2013) Engagement of soluble resistance-related calcium binding protein (sorcin) with foot-and-mouth disease virus (FMDV) VP1 inhibits type I interferon response in cells. *Veterinary Microbiology* 166: 35-463.
4. Chinsangaram J, Moraes M, Koster M, Grubman MJ (2003) Novel viral disease control strategy: adenovirus expressing alpha interferon rapidly protects swine from foot-and-mouth disease. *J Virology* 77: 1621-1625.
5. Wu Q, Brum MC, Caron L, Koster M, Grubman MJ (2003) Adenovirus-mediated Type I interferon expression delays and reduces disease signs in cattle challenged with foot-and-mouth disease virus. *J Interferon Cyto Res* 23: 359-368.
6. Moraes MP, Chinsangaram J, Brum MC, Grubman MJ (2003) Immediate protection of swine from foot-and-mouth disease: a combination of adenoviruses expressing interferon alpha and a foot-and-mouth disease virus subunit vaccine. *Vaccine* 22: 268-279.
7. Dias CC, Moraes MP, Segundo FDS, Santos TL, Grubman MJ (2011) Porcine Type I interferon rapidly protects swine against challenge with multiple serotypes of foot-and-mouth disease virus. *J Interferon Cyto* 31: 227-236.
8. Ramirez-Carvajal L, Diaz-San Segundo F, Ramirez-Medina E, Rodriguez LL, de los Santos T (2016) Constitutively active IRF7/IFR3 fusion protein completely protects swine against foot-and-mouth disease. *J Virology* 90: 8809-8821.
9. Perez-Martin E, Weiss M, Diaz-San Segundo F, Pacheco JM, Arzt J, et al. (2012) Bovine Type III interferon significantly delays and reduces the severity of foot-and-mouth disease in cattle. *J Virology* 86: 4477-4486.
10. Diaz-San Segundo F, Dias CC, Moraes MP, Weiss M, Perez-Martin E, et al. (2013) Venezuelan equine encephalitis replicon particles can induce rapid protection against foot-and-mouth disease virus. *J Virology* 87: 5447-5460.
11. Straub OC, Ahl R (1976) Lokale interferonbildung beim rind nach intranasaler infektion mit avirulictem IBR/IPV-virus und deren wirkung auf eine anschließende infektion mit maul- und klauen-seuche-virus. *Zbl Vet Med* 23: 470-482.
12. McVicar JW, McKercher PD, et al. (1974) The influence of infectious bovine rhinotracheitis virus in the foot-and-mouth disease carrier state. *Proc 80th Ann Meeting US Animal Health Ass* 254-261.
13. Todd ID, Volenec FJ, Paton IM (1972) Interferon in nasal secretions and sera of calves after intranasal administration of a virulent infectious bovine rhinotracheitis virus: Association interferon in nasal secretions with early resistance to challenge with virulent virus. *Infect Immun* 5: 699-706.
14. Cummins JM, Hutcheson DP (1983) Effect of interferon on feedlot cattle. *Bovine Proc* 15: 109-115.
15. Kubin G (1961) Interferenz zwischcn dem virus des blaschenausschlages des rindes und dem virus der maul- und klauenseuche. *Wien Tierarztl Monatsschr* 48: 265-277.
16. Unpublished data. Colorado Serum Company, Denver, CO www.colorado-serum.com
17. Richmond DY, Campbell CH (1973) Foot-and-mouth disease virus: Protection induced in mice by two orally administered interferon inducers. *Archiv für die gesamte Virusforschung* 42: 102-105.
18. Richmond JY, Hamilton LD (1969) Foot-and-mouth disease virus inhibition induced in mice by synthetic double-stranded RNA (polyriboinosinic and polyribocytidylc acids). *Proc Nat Acad Sci USA* 64: 81-86.
19. Rosenquist BO (1971) Polyriboinosinic-polyribo cytidylic acid-induced interferons in calves. *Am J Vet Res* 32: 35-39.

20. Theil KW, Mohanty SB, Hetrick FM (1971) Effect of Poly I:C on infectious bovine rhinotracheitis virus infection in calves. *Proc Soc Exp Biol Med* 137: 1176-1179.
21. Angulo AB, Savan M (1970) Preliminary studies in interferon induction on the respiratory tract of cattle. *Proc 74th Ann Meeting US Animal Health Ass* 1970: 577-583.
22. Cunliffe HR, Richmond JY, Campbell CH (1977) Interferon inducers and foot-and mouth disease vaccines: influence of two synthetic polynucleotides on antibody response and immunity in guinea pigs and swine. *Can J Comp Med* 41: 117-121.
23. McVicar JW, Richmond JY, et al. (1973) Observation of cattle, goats and pigs after administration of synthetic interferon inducers and subsequent exposure to foot and mouth disease virus. *Can J Comp Med* 37: 362-368.
24. Dias CC, Moraes MP, Weiss M, Diaz-San Segundo F, Perez-Martin E, et al. (2012) Novel antiviral therapeutics to control foot-and-mouth disease. *J Interferon Cytokine Res* 32: 462-469.
25. Cao Y, Lu Z, Li Y, Sun P, Li D, et al. (2013) Poly(I:C) combined with multi-epitope protein vaccine completely protects against virulent foot-and-mouth disease virus challenge in pigs. *Antiviral Res* 97: 145-153.
26. Georgiades JA (1993) Effect of low dose natural human interferon alpha given into the oral cavity on the recovery time and death loss in feedlot hospital pen cattle: a field study. *Arch Immunol Ther Exp* 41: 205-207.
27. Cummins JM, Hutcheson DP, Cummins MJ, Georgiades JA, Richards AB (1993) Oral therapy with human interferon alpha in calves experimentally injected with infectious bovine rhinotracheitis virus. *Arch Immunol Ther Exp* 41: 193-197.
28. Cummins JM, Guthrie D, Hutcheson DP, Krakowka S, Rosenquist BD (1999) Natural human interferon alpha orally as a treatment of bovine respiratory disease complex. *J Interferon Cytokine Res* 19: 907-910.
29. Young AS, Maritim AC, Kariuki DP, Stagg DA, Wafula JM, et al. (1990) Low-dose oral administration of human interferon alpha can control the development of *Theliera parva* infection in cattle. *Parasitology* 2: 201-209.
30. Brod SA, Nelson L, Jin R, Wolinsky JS (1999) Ingested interferon alpha induces Mx RNA. *Cytokine* 11: 492-499.
31. Takayama S, Iwaki K, Nishida Y, Tanaka M, Fujii M, et al. (1999) Effects of interferon alpha on antibody production in mice with induced tolerance. *J Interferon Cytokine Res* 19: 895-900.
32. Satoh Y, Kasama K, Kuwabara M, Yimin, Diao HY, et al. (1999) Suppression of late asthmatic response by low-dose oral administration of interferon- β in the guinea pig model of asthma. *J Interferon Cytokine Res* 19: 887-894.
33. Tovey MG, Mcritet JF, et al. (2000) Oral interferon therapy: mechanisms of action. *Eur Cytokine Netw* 1: 154.
34. Dron M, Mcritet J-F, et al. (2001) Protein related to the tocsins. *J Interferon Cytokine Res* 2: S65.
35. Smith JK, Siddiqui AA, Krishnaswamy GA, Dykes R, Berk SL, et al. (1999) Oral use of interferon alpha stimulates ISG-15 transcription and production by human buccal epithelial cells. *J Interferon Cytokine Res* 19: 923-928.
36. Tovey MG, Lallemand, C, Meritet, J-F, Maury C (2003) Oromucosal interferon therapy: mechanism(s) of action. Presentation at annual meeting ISICR 2003.
37. Eid P, Meritet JF, Maury C, Lasfar A, Weill D, et al. (1999) Oral interferon therapy: pharmacokinetics and pharmacodynamics. *J Interferon Cytokine Res* 19: 157-169.
38. Cummins JM, Beilharz MW, Krakowka S (1999) Oral use of interferon. *J Interferon Cytokine Res* 19: 853-858.
39. Tovey MG, Bandu MT, Begon-Lewis, Brouty-Boyé D, Gresser I (1997) Antiviral activity of bovine interferons on primate cells. *J Gen Virol* 36: 341-344.
40. Carter WA (1979) Mechanisms of cross species activity of mammalian interferons. *Pharmacol Ther* 7: 245-252.
41. Carter WA, Davis LR Jr, Chadha KC, Johnson FH (1979) Porcine leukocyte interferon and antiviral activity in human cells. *Molecular Pharmacology* 15: 685-690.
42. Gresser I, Bandu MT, Brouty-Boyec D, Tovey M (1974) Pronounced antiviral activity of human interferon on bovine and porcine cells. *Nature* 251: 543-545.
43. Branca A (1986) High-affinity receptors for human interferon in bovine lung and human placenta. *J. Interferon Res* 6: 305-311.
44. Meister A, Uze G, Mogensen KE, Gresser I, Tovey MG, et al. (1986) Biological activities and receptor binding of two human recombinant interferon and their hybrids. *J Gen Virol* 67: 1633-1643.
45. Chambers PJ, Saltis J, Alin P, Wright A, Linnane AW, et al. (1990) Receptors for human interferon alpha on bovine cells: specificity and tissue distribution. *Immunopharmacol Immunotoxicol* 12: 513-525.
46. Dcsmyter J, Stewart WE (1976) Molecular modification of interferon: attainment of human interferon in a conformation active on cat cells but inactive on human cells. *Virology* 70: 451-458.
47. Mamber SW, Lins J, Gurel V, Hutcheson DP, Pinedo P, et al. (2016) Low-dose oral interferon modulates expression of inflammatory and autoimmune genes in cattle. *Vet Immunology Immunopathology* 172: 64-71.