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/Abstract

N

Quantitative Structure-Activity Relationship (QSAR) modeling was conducted on some 3-aminopropane-1, 2-diol and
I-aminoethane-1, 2-diol derivatives with anticonvulsant activity against maximal electroshock induced seizure using Genetic
Function Algorithm-Multiple Linear Regression (GFA-MLR) method. The data set (37 molecules), was divided into 26 training
and 11 test subsets by Modified-K-mediods clustering method. The models built by the GFA-MLR method provided satisfactory
statistical results with LOF (0.087 to 0.097), R? (0.963 to 0.980), Q* (0.948 t0 0.971), F (139.3 t0 258.3), RZpred (0.861t00.931) and
MAE (95%) (0.059 to 0.066). Descriptors contained in these models suggested that increment in molecular mass and polarizability
of dataset molecules was favorable for improving their anticonvulsant activity values. Intelligent consensus modeling applied
to the models gave a representative model with improved MAE (95%) of 0.054. Applicability domain of the models was well
defined and therefore, the models can be used to screen molecules for anticonvulsant activity.
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Introduction

The continuous effort to investigate new molecules with
anticonvulsant properties is important because about 30% of
epileptic patients with convulsion as a major symptom do not
respond to marketed Antiepileptic Drugs (AEDS) [1]. In addition,
almost all marketed AEDs had attendant side effects [2]. Therefore,
developing new anticonvulsant improved quality in term of potency
and safety is a continuous task for medicinal scientist. Modern
computational chemistry as an evolving discipline provided
rational approaches to drug design. It accelerates and reduces the
cost of drug discovery process via obliteration of classical trial and
error approach [3]. An example of computational approach to drug
discovery is Quantitative Structure-Activity Relationship (QSAR)
modeling which aids in identifying structure feature of a molecule
which correlates mathematically with the observed biological

activity of the molecule [7-8] [4-6]. This approach is now widely
used as an aid to or an outright substitute for experimental studies
to predict the activity of the molecules from their structure [7]. It
reduces the number of animals needed for experiment and reduces
cost in term of funds and time [8].

3-aminopropane-1, 2-diol and I-aminoethane-1, 2-diol
derivatives were reported to have anticonvulsant activity in Maxima
Electroshock Seizure (MES) test, which one of the golden test for
preliminary screening of molecules for anticonvulsant activity. To
the best of our knowledge there were no QSAR reports on this
group of molecules using a combination of density function theory
quantum mechanical method and chemo metric principles. The
objective of this study is to explore the structural features that are
responsible for observed anticonvulsant activity of these groups of
molecules through QSAR methodology.
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Materials and Method
Data Set

The data set were derivatives of 3-aminopropane-1,
2-diol and 1-aminoethane-1, 2-diol whose IUPAC name and
anticonvulsant activity (against Maxima Electroshock (MES)
induced seizure) values were obtained from literature [9]. The
activity value reported as amount of molecule (mg kg™') that is
effective to prevent convulsion in fifty percent of the tested animals
(ED, ) was transformed to ED, (mol kg™') and later to log (1/ED, )
to abate the deviation to the normal distribution of the data set
activity values [10].

Molecular Structure Generation, Optimization and
Descriptors Calculation

Spartan 14 [11] software was used to draw and optimize the

equilibrium geometry of each molecule in the dataset. Density
function theory B3LYP/6-31G** quantum mechanical method
was employed for optimization calculation using Pulay DIIS
algorithm and direct geometric minimization. This method gave
the most stable molecule associated with absolute minima in the
potential energy hypersurface which represents the most probable
structure of the molecule [12]. DFT also gave reliable information
on electronic properties of molecule [13].

The optimized structures were ported to PaDEL-Descriptor
software [14] to compute around 1875 different physicochemical,
topological and structural molecular descriptors. Molecular
structure and the corresponding anticonvulsant activity value
of dataset molecules were presented in (Table 1). Datasets
anticonvulsant activity values and calculated molecular descriptors
arranged in a matrix constituted the database for the study.
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Table 1: Molecular structure and anticonvulsant activities of dataset molecules.
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Dataset Division

Modified K-Medoid clustering algorithm proposed by (Park
& Jun, 2009) [15] available in Modified KMedoid version 1.2 was
used to divide the database into training set for model development
and test set for model validation. The algorithm proceeds via
three main steps which are, selection of initial Mediod, update of
selected mediods and assignment of object to mediods. In the first
step, given n numbers of objects having p number of variables
(descriptors) each, they were grouped into given k clusters, where
k <n. Defining the variable of objectias X, (i=1,....n;a=1,..
.,p). The Euclidean distance (dij) between two object i and object j
was calculated:

I -
dij=ﬂ'E‘:=l{}{ig—ng} i=1,....... ,nandj=1...n (1)

Scaled Euclidean distance (1) for each object was calculated

by dividing the distances by sum of the entire distances. The ¥;
for objects in each cluster k was arranged in ascending order and

objects with smallest v; values in each group are selected as the
initial most middle objects in a cluster (mediods). The objects were
re-shuffled to obtain initial cluster by assigning each object to the
nearest medoid. The sum of distances from all objects to their
medoids was calculated and kept for comparison.

To update the mediods, a new medoid of each cluster was
found, which is the object minimizing the total distance to other
objects in its cluster. Then the current medoid in each cluster is
updated by replacing with the new medoid. Then (the third step),
each object is assigned to the nearest medoid resulting to the
formation of new k clusters. The sum of distance of objects to
their mediods (total cost distance) was re-calculated. Now, if the
total cost distance is equal to the previous one, the algorithm stops,
otherwise, it goes back to the second step [15].

Transformation of Descriptor Values

Molecular properties are often measured in different unit
and regression analysis frequently produces equation that favors
property with higher magnitude of measurement [10]. To give all
properties (descriptors) equal chance of appearing in the models
produced in the study, descriptor values were transformed by

normalization method using the equation below:

[B-Emin]

(Emax— Emin)

X'= “4)

Where X'is the normalized descriptor, X, is the original
descriptor value, X and X . are the maximum and minimum
descriptor value respectively in a descriptor column of the database
[16].

Selection of Most Desirable Descriptor

Using the training set data only, combinations of descriptors
that were optimally correlated with the anticonvulsant activity
of the dataset molecules were selected using Genetic Function
Algorithm (GFA) available in Materials Studio 7.0. GFA is a
frequently used method that utilizes genetic algorithm to select
combinations of descriptors that can be used to produce models
and multivariate adaptive regression splines algorithm to evaluate
the fitness of the models [17]. It has the advantage of producing
of multiple models via repeated runs and automatically selects and
determines the exact number of descriptors needed to build a full-
size model.

Construction and Validation of QSAR Models

The combinations of training set descriptors reported by the
GFA variable selection were collected in separate spreadsheets
for both training and test sets. These spread sheets were imported
into the MLRplusValidation1.3 [18] to calculate various internal
and external validation parameters. Furthermore, the presence of
multicolinearity problem among descriptor blend that made up a
model was checked with Variance Inflation Factor (VIF) value for
each descriptor i:

VIF = ——

1- R}

(10)

Where R7 is the coefficient of determination of the regression
of descriptor i on all the other descriptors. VIF value greater
than 10 indicates high degree of correlation among descriptors
(multicolinearity problem) [19]. Full explanations of the various
validation parameters used were presented in (Table 2).

Volume 2018; Issue 02



Citation: Oluwaseye A, Uzairu A, Shallangwa GA, Abechi SE (2018) Computational Modeling of the Anticonvulsant Activity of 3-Aminopropane-1,2-Diol and 1-Amin-
oethane-1,2-Diol Derivatives. Curr Res Bioorg Org Chem: CRBOC-107. DOI: 10.29011/CRBOC-107. 100007

Symbol Definition and allowed threshold Ref.
Internal validation (validation with the training set data)
LOF Lack of fit, the smaller the value the better the model Arthur 2016 [16]
R? Determination coefficient for training dataset, R* > 0.5 indicate goodness of fit
R?, i Adjusted determination coefficient for training dataset. R?, i 0.5 indicate good internal robustness
F Variance ratio Tropsha, 2010 [10]
Q Square of correlation coefficient for leave one out cross-validation. Q* /> 0.5 indicate good internal
Lo robustness
PRESS Predicted error sum of square
RMSEP Root mean square error of prediction
chp Y-randomization(scrambling) parameter, CR2p> 0.5 indicate the model is not by chance correlation Roy. 2007 [20]
External validation (validation with test set data) based on regression coefficient R
Rz(pre o Predicted determination coefficient for the test set data, RZ(pre > 0.6 indicate good predictive ability
rf — r'é rZ, r'é are the square of correlation coefficient for the plot of predicted versus observed activity for
T test set with and without intercept respectively. If the value of the parameter is < 0.1 then, the model is
predictive
K Slope for the plot of predicted versus observed activity for test set data. 0.85 <k < 1.15 indicate model
is predictive .
(Golbraikh and
pd _ p . Tropsha, 2002) [21]
o ry” is the square of correlation coefficient for the plot of observed versus predicted activity for test set
re data. If the value of the parameter is < 0.1 then, the model is predictive
K Slope for the plot of observed versus predicted activity for test set data. 0.85 <k’ < 1.15 indicate model
is predictive
et ra and ry’ are as defined above, [r> -1, | indicates the model is predictive
External validation based on error measure
AE Average error for the test set data. (AAE- |[AE|)< (0.5 XAAE) indicate presence of systematic
error in the model
AAE Average absolute for the test set data,
R Square correlation coefficient for the plot of residual against measured activity values of the
res test set data, R? > 0.5 indicate presence of systematic error in the model
(Roy et al., 2016)
. 22
Mean absolute error for the test set data. (a) MAE = 0.1 * training set response range or MAE + (3 [22]
MAE ® 0) = 0.2 * training set response range indicate good prediction. (b) MAE > 0.15 * training set
response range or MAE + (3 * o) > 0.25 * training set response range indicate bad prediction. (c) Any
prediction that does not fall into condition (a) and (b) may be considered as of moderate quality. Note,
o denotes the standard deviation of the absolute error values for the test set data.

Table 2: QSAR model validation parameters.
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Models Applicability Domain (AD)

The AD is the structural and chemical space of a QSAR
model where it can make a reliable prediction [23]. Degree of
extrapolation method was used to define AD in the study. It uses
leverage (h,) values for each compound obtained as the diagonal
elements of a hat matrix and standardized residual (SDR) produced
by the models. Williams plot (graph of SDR versus h) gives a
quick pictorial representation of AD in this method. Hat matrix H
was computed with the equation below:

(17)

Where X represents the descriptors matrix and X" is the
transpose of the matrix. The diagonal elements of H are leverages
for each compound. Leverage threshold (h*) for a model was
computed with the equation below:

H =X(XTx)-1xT

i+l

h* = (18)

n
where n is the number of compounds in the training set
only and k is the number of descriptors in the model. SDR was
computed with the equation below:

SDR = Ypred— Yobs

(19)

fem +2
'I'=;| |an!d_Tn'b=|
5 n

Where n is the number of compounds in the training set. Y
and Y, are the predicted and experimentally observed activity
values respectively. A compound with h, > h* for a model is
structurally dissimilar to other members of the model training set
i.e. an influential data and prediction for such compound by the
model are not reliable. A compound with SDR > =+ 3 is an outlier
in the response space of the model [23].

Results and Discussion
Training Set and Test Set Data Structure

The clustering method used divivded the entire data into 26
training set (70% of the entire dataset) and 16 test set (30% of the
entire dataset). The test compounds were marked with asterisk in
Table 1. The plot of normalized mean distance against the observed

anticonvulsant activity for both training and test set (Figure 1)
showed that test set data was distributed within the descriptor
space of the training set data. This showed that the data division
method used performed well.

Y 1.2 .
£ 10 a .

s

2 08 « * .

c 0.6 [ ] [ ]
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E ol * 4 " .. ® Train
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Figure 1: Diversity analysis.
QSAR Models and Validation Parameters

The top three models produced by the GFA-MLR method
used in the study were presented in Equation 4 to 6. These QSAR
models were obtained from 26 training set data and contained 4
descriptors each, meaning their Toplis ratio was 6.5. Hence, they
do not violate the QSAR semi-empirical rule of thumb [24].

PED,, = 2.82476(+/-0.04039) + 0.34501(+/-0.04531) AATSC8m
- 0.58205(+/-0.04129) MATS3m + 1.52741(+/-0.05204) Mp +
1.07807(+/-0.04242) SHCsats o)

PED,, = 2.74577(+/-0.05619) + 1.64954(+/-0.07662) AATS2p +
0.45055(+/-0.06123) AATSC8m - 0.77332(+/-0.0607) MATS3m
+1.13355(+/-0.05959) SHCsats (5)

PED,, = 2.68245(+/-0.05494) + 0.65755(+/-0.05892) AATSC8m
- 0.74266(+/-0.05605) MATS3m + 1.11772(+/-0.0558) SHCsats
+1.55598(+/-0.06817) TDB2p (6)

Correlation analysis carried out on the descriptors contained
in each model showed the highest absolute correlation coefficient
between descriptors was 0.667 (Table 3). This indicated that
descriptors contained in the models were relatively orthogonal
to one another. Their VIF values (Table 3) further confirmed
there was no multi-co-linearity problem in the models reported.
Detailed quality and validation parameters values for the models
were presented in (Table 4) These results showed that the models
had good internal and external predictive ability and were void of
systematic error.
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Equation 4
AATSC8m MATS3m Mp SHCsats VIF
AATSC8m 1 1.077
MATS3m 0.194 1 1.252
Mp 0.001 0.362 1 2.240
SHCsats 0.156 -0.085 -0.677 1 2.011
Equation 5
AATS2p AATSC8m MATS3m SHCsats VIF
AATS2p 1 2.636
AATSC8m -0.010 1 1.066
MATS3m 0.459 0.197 1 1.485
SHCsats -0.677 0.135 -0.086 1 2.121
Equation 6
AATSC8m MATS3m SHCsats TDB2p VIF
AATSC8m 1 1.114
MATS3m 0.228 1 1.399
SHCsats 0.151 -0.026 1 2.060
TDB2p -0.126 0.364 -0.677 1 2.442
Table 3: Models correlation matrix and variance inflation factor.
Parameters/Models Eq. 4 Eq.5 Eq. 6 Threshold value Comment
Internal validation (validation with the training set data)
LOF 0.087 0.092 0.097 Low value
R? 0.980 0.963 0.967 >0.6
R? . 0.976 0.957 0.961 >0.6 . . . -
. Robust models with good internal predictive ability
Qo0 0.971 0.948 0.948 >0.5
RMSEP 0.083 0.096 0.067
PRESS 0.047 0.085 0.076
R? 0.909 0.886 0.891 >0.5 Model void of chance correlation (Roy, 2007) [20]
External validation (validation with test set data) based on regression coefficient R
’ o) 0.897 0.861 0.931 >0.6
r? 0.736 0.739 0.837 >0.5
S 0.723 0.617 0.809 >0.5
2 0.708 0.738 0.837 >0.5
[r?, - 172 0.015 0.121 0.027 <0.3 Robust models with good external predictive ability
vt —rg /vt 0.018 | 0.165 | 0033 0.1 (Golbraikh & Tropsha, 2002) [21]
k 0.996 0.999 1.000 0.85<k<1.15
rf —r2 vt 0.038 0.001 0.001 <0.1
kK’ 1.0003 0.999 0.999 0.85<k<1.15
External validation based on error measure
R? (res. vs. obs.) 0.131 0.036 0.014 <0.5 Models was void of systematic error
nPE/nNE 0.833 1.200 1.750 <5
MPE/MNE 0995 | 0987 | 0.692 ) (Roy et al., 2016) [22]
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MAE(95% data) Models made good predictions

SD(95% data)

0.059
0.027

0.066
0.040

0.059
0.022

(Roy et al., 2016) [22]

Table 4: QSAR models validation scores.

Although the models reported were of good quality, the aim of all QSAR practitioners to improve the quality of prediction by
reducing predicted residuals for test/query compounds to the barest minimum. To achieve this aim, intelligent consensus modeling [25]
available in Intelligent Consensus Predictor version 1.1 software was applied on the models. Intelligent consensus modeling combined
the proposed validated individual models (Equation 4 to Equation 6), and it carefully accounted for carefully accounting for the different
assumptions characterizing each model. The optimized software setting for the study was without the entire additional criteria (i.e.
Euclidean distance cutoff, applicability domain criteria and Dixon Q-test), a similar condition reported in literature [25].

The test-set validation parameters for individual models as well as consensus models obtained were reported in (Table 5). In the
table, IM1, IM2 and IM3 represent the Eq. 4, Eq. 5 and Eq. 6 respectively. While, CMO is the ordinary consensus model which uses
simple average of prediction of individual model for all compounds in the test set; CM1 is the intelligent consensus modell which uses
the average of predictions from all qualified individual models; CM2 is the intelligent consensus model 2 which uses Weighted Average
Predictions (WAPs) from all qualified individual models; and CM3 is the intelligent consensus model 3 which uses the best selection of
predictions (compound-wise) from individual models [25].

Model | Qf, | Qf, | Qf, | ccC | Ry | ARp MAE ggﬁ PRESS I;l;slis)s SDEP (S(gfnl:
IMI | 0.890 | 0.698 | 0.919 | 0.847 | 0.646 | 0.107 | 0.074 0.063 0.076 0.043 0.083 0.065
IM2 | 0.861 | 0.617 | 0.897 | 0.844 | 0.643 | 0.144 | 0.079 0.067 0.102 0.059 0.096 0.077
IM3 | 0931 | 0.809 | 0.949 | 0.912 | 0.788 | 0.097 | 0.064 0.060 0.051 0.040 0.068 0.063
CMO | 0.921 | 0.781 | 0.941 | 0.897 | 0.753 | 0.047 | 0.063 0.055 0.058 0.037 0.073 0.061
CMI1 | 0921 | 0.781 | 0.941 | 0.897 | 0.753 | 0.047 | 0.063 0.055 0.058 0.037 0.073 0.061
CM2 | 0919 | 0.776 | 0.940 | 0.893 | 0.743 | 0.015 | 0.063 0.054 0.060 0.037 0.074 0.061
CM3 | 0.897 | 0.716 | 0.924 | 0.855 | 0.661 | 0.099 | 0.071 0.060 0.080 0.048 0.085 0.069

Table 5: Test set validation parameters for individual model and consensus model.

In the table, CMO was ordinary consensus model in which
simple average of prediction of individual model for test set
compounds as used. CM1 was intelligent consensus lin which
the average of predictions from all qualified individual models
for a given compounds were used. CM2 was intelligent consensus
2 in which uses weighted average predictions (WAPs) from all
qualified individual models for a given test set compounds was
used. Finally, CM3 was intelligent consensus 3 in which uses the
best selection of predictions (compound-wise) from individual
models was used [25].

Comparing the three individual models (IM1-IM3) with the
three intelligent consensus models (CM1-CM3), it was obvious
that the values of external validation parameters were better in
almost all the cases for consensus models. The mean absolute
error MAE (95%) metric for intelligent consensus models CM1

to CM3 were lower compare to that of individual models (Table
5). CM2 emerged as superior to all other models with MAE (95%)
0.054 (Table 5). CM2 was used to predict the activity of the entire
data and the predicted activity values were reported in Table 1.
The predicted test set activity values for the entire dataset by the
individual models (IM1-IM3) and the intelligent consensus models
(CM0-CM3) were presented in Table S2 of the Supplementary file.

Linear relationship existed between the experimental and
predicted activity values by the CM2 (Figure 2) and there was even of
its predicted activity residuals around the line standardized residual
equal zero (Figure 3). These observations indicated that the model
had good internal and external predictive capability and also void
of systematic error. Therefore, it can be used to make prediction
for known molecule without activity, provided the molecule
is in the applicability domain (AD) of the developed models.
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Figure 2: Models predicted versus experimental activity values for the data set molecules.
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Figure 3: Models standardized residual against experimental anticonvulsant activity values.

Models Applicability Domain

The William plots for the models (Figures 4-6) showed that all dataset molecules had leverage value less than less than the models
threshold leverage (h* = 0.57) and their standardized residual (SDR) were less than +2.5. This indicated that all molecules were within
the applicability domain of the models defined by the square area 0 < hi <h* and -2.5 < SDR < 2.5. Hence, the models reported were
able to predict the activity values for all dataset molecules with high level of reliability. In summary, the models had high-quality

parameters and great predictive power for molecules within their AD.
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Descriptors Interpretation

A QSAR model can be used as knowledge generator to improve the biological activity under consideration for any molecule.
Interpretation of the model descriptors usually played a major role in this endeavor. Therefore, attempt was made in the study to a brief
interpretation for descriptors contained in the reported QSAR models. Table 6 contained definition of descriptors shared by reported

models; their average regression coefficient and incidence.

No. Descriptors Physical meaning ARC(I)
1 AATSC8m Average/centered autocorrelation of topological structure -lag8/weighted mass 0.484(3)
2 AATS2p Average autocorrelation of topological structure -lag2/weighted by polarizability 1.649(1)
3 MATS3m Moran autocorrelation — lag 3/weighted by relative atomic mass -0.699(3)
4 Mp Mean atomic polarizability (scaled on Carbon atom) 1.527(1)
5 SHCsats Sum of atom-type H E-State: H on C sp3 bonded to saturated C 1.109(3)
6 TDB2p Topological distance based autocorrelation - lag 9 / weighted by polarizability 1.555(1)

Note: ARC (I) is average regression coefficient (incidence).

Table 6: Molecular descriptors, their regression coefficient and incidence.

AATSC8m, AATS2p and MATS3m were 2D spatial-
dependent autocorrelation descriptors calculated on a molecular
graph with the use of Broto-Moreau coefficient (in the case
AATSC8m and AATS2p) and Moran coefficient (in the case of
MATS3m) [26]. AATSC8m measures the strength of the connection
between relative atomic masses of two atoms in a molecular space
separated by eight bonds (lag 8). It had positive average regression
coefficient and appeared in the three models (Table 6). AATS2p
measures the strength of the connection between polarizability
of two atoms in a molecular space separated by two bonds (lag
2). Also had positive average regression coefficient and with one
incidence in the entire models (Table 6). While MATS3m measures
the strength of the connection between relative atomic masses of
two atoms in a molecular space separated by three bonds (lag 3),
it was negatively correlated with the anticonvulsant activity of
the studied dataset (Table 6). It also appeared in the three models.
Therefore, increment in values of AATSC8m and AATS2p
augments the anticonvulsant activity value of dataset molecules,
while, that of MATS3m diminishes the activity.

Mp was a 2D constitutional descriptor defined as mean
atomic polarizability scaled on Carbon atom [14]. It was positively
correlated to the anticonvulsant activity of the studied dataset
and occurred in one of the model (Table 6). SHCsats is a 2D
electrotopological-state index of an atom which unifies in a single
index both electronic and topological description of a molecule

[27]. 1t is defined as Sum of atom-type H on C sp3 bonded to
another saturated C. It had positive regression coefficient and
incidence of three (Table 6). TDB2p is 3D topological distance
based autocorrelation - lag 2 / molecular polarizability. It is a
member of the 3D autocorrelation descriptors [28] which uses
both Euclidean (geometric) and topological distances to encode
information about molecular structure. TDB is an index of shape
and branching of molecules [26]. It occurs in one of the model
reported and it’s positively correlated to the anticonvulsant activity
of dataset molecules.

In summary, the descriptors contained in the reported models
suggested that increment in the molecular mass and polarizability
will improve the anticonvulsant activity of the dataset molecules.
This can be achieved via chain elongation to increase the value
of SHCsats, AATSC8m and addition of electronegative elements
which will be favorable to the values of AATS2p, Mp and TDB2p.

Conclusion

Anticonvulsant activity of some 3-aminopropane-1,2-
diol and l-aminoethane-1,2-diol derivatives were successfully
model via QSAR strategy. The QSAR models obtained had good
statistical quality: LOF (0.087 to 0.097), R? (0.963 to 0.980), Q>
(0.948 to 0.971), F (139.3 to 258.3), R?  (0.861 to 0.931) and
mean absolute error after removal of 5% data i.e. MAE (95%)
(0.059 to 0.066). Intelligent consensus 2 (CM2) with MAE (95%)
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of 0.054 was the golden model for making prediction in the
study. The result in the study showed that AATSC8m, AATS2p,
MATS3m, Mp, SHCsats and TDB2p descriptors had influence on
the anticonvulsant activity values of dataset molecules. Therefore,
increase in molecular mass and polarizability of dataset molecules
is favorable for improving their anticonvulsant activity values.
The models reported were robust and with good predictive ability.
Their applicability domains were well defined and they can have
used to virtually design and screen molecules for anticonvulsant
activity.
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