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Abstract
Quantitative Structure-Activity Relationship (QSAR) modeling was conducted on some 3-aminopropane-1, 2-diol and 

1-aminoethane-1, 2-diol derivatives with anticonvulsant activity against maximal electroshock induced seizure using Genetic 
Function Algorithm-Multiple Linear Regression (GFA-MLR) method. The data set (37 molecules), was divided into 26 training 
and 11 test subsets by Modified-K-mediods clustering method. The models built by the GFA-MLR method provided satisfactory 
statistical results with LOF (0.087 to 0.097), R2 (0.963 to 0.980), Q2 (0.948 to 0.971), F (139.3 to 258.3), R2

pred (0.861 to 0.931) and 
MAE (95%) (0.059 to 0.066). Descriptors contained in these models suggested that increment in molecular mass and polarizability 
of dataset molecules was favorable for improving their anticonvulsant activity values. Intelligent consensus modeling applied 
to the models gave a representative model with improved MAE (95%) of 0.054. Applicability domain of the models was well 
defined and therefore, the models can be used to screen molecules for anticonvulsant activity. 

Introduction 
The continuous effort to investigate new molecules with 

anticonvulsant properties is important because about 30% of 
epileptic patients with convulsion as a major symptom do not 
respond to marketed Antiepileptic Drugs (AEDS) [1]. In addition, 
almost all marketed AEDs had attendant side effects [2]. Therefore, 
developing new anticonvulsant improved quality in term of potency 
and safety is a continuous task for medicinal scientist. Modern 
computational chemistry as an evolving discipline provided 
rational approaches to drug design. It accelerates and reduces the 
cost of drug discovery process via obliteration of classical trial and 
error approach [3]. An example of computational approach to drug 
discovery is Quantitative Structure-Activity Relationship (QSAR) 
modeling which aids in identifying structure feature of a molecule 
which correlates mathematically with the observed biological 

activity of the molecule [7-8] [4-6]. This approach is now widely 
used as an aid to or an outright substitute for experimental studies 
to predict the activity of the molecules from their structure [7]. It 
reduces the number of animals needed for experiment and reduces 
cost in term of funds and time [8]. 

3-aminopropane-1, 2-diol and 1-aminoethane-1, 2-diol 
derivatives were reported to have anticonvulsant activity in Maxima 
Electroshock Seizure (MES) test, which one of the golden test for 
preliminary screening of molecules for anticonvulsant activity. To 
the best of our knowledge there were no QSAR reports on this 
group of molecules using a combination of density function theory 
quantum mechanical method and chemo metric principles. The 
objective of this study is to explore the structural features that are 
responsible for observed anticonvulsant activity of these groups of 
molecules through QSAR methodology.
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Materials and Method 
Data Set

The data set were derivatives of 3-aminopropane-1, 
2-diol and 1-aminoethane-1, 2-diol whose IUPAC name and 
anticonvulsant activity (against Maxima Electroshock (MES) 
induced seizure) values were obtained from literature [9]. The 
activity value reported as amount of molecule (mg kg-1) that is 
effective to prevent convulsion in fifty percent of the tested animals 
(ED50) was transformed to ED50 (mol kg-1) and later to log (1/ED50) 
to abate the deviation to the normal distribution of the data set 
activity values [10].

Molecular Structure Generation, Optimization and 
Descriptors Calculation

Spartan 14 [11] software was used to draw and optimize the 

equilibrium geometry of each molecule in the dataset. Density 
function theory B3LYP/6-31G** quantum mechanical method 
was employed for optimization calculation using Pulay DIIS 
algorithm and direct geometric minimization. This method gave 
the most stable molecule associated with absolute minima in the 
potential energy hypersurface which represents the most probable 
structure of the molecule [12]. DFT also gave reliable information 
on electronic properties of molecule [13]. 

The optimized structures were ported to PaDEL-Descriptor 
software [14] to compute around 1875 different physicochemical, 
topological and structural molecular descriptors. Molecular 
structure and the corresponding anticonvulsant activity value 
of dataset molecules were presented in (Table 1). Datasets 
anticonvulsant activity values and calculated molecular descriptors 
arranged in a matrix constituted the database for the study.  

O

O
H
N R3R1

R2

ID R1 R2 R3 pED50 pED50(pred.) Residual

1 NO H
O

3.979 4.054 -0.075

2 N H
O

3.486 3.755 -0.268

3 HN N H
O

3.772 3.487 0.285

4
N

N H
O

3.595 3.568 0.027
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5* N H
O

3.553 3.734 -0.181

6 N
H3C

H3C
H

O
3.243 3.234 0.009

7* N
H3CH2C

H3CH2C
H

O
3.389 3.327 0.062

8* N H
O

3.966 3.872 0.094

9
H
NHO H

O
3.639 3.704 -0.065

10
H
NBr H

O
3.643 3.612 0.031

11
H
NN+

O

-O
H

O
3.231 3.233 -0.002

12*
H
NF H

O
3.438 3.345 0.093

13
H
N H

O
3.315 3.357 -0.042
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14 NHO H
O

3.874 3.825 0.049

15*
S

N O

O
H 3.373 3.424 -0.052

16*

S

N
O

Cl

O
H 3.586 3.519 0.066

17
S

N ON+

O

-O

O
H 4.096 4.087 0.009

18*
S

N
O

Cl

Cl O
H 3.532 3.553 -0.021

19

S

N
O

HO

O
H 4.191 4.246 -0.054

20

S

N
O

HO

OH

O
H 3.409 3.495 -0.086

21*

S

N OO

O
H 3.504 3.494 0.010

22

S

N
O

F

O
H 3.458 3.413 0.046
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23

S

N O

Br O
H 3.971 3.929 0.042

24
S

N O
O2N

NO2 O
H 3.967 3.961 0.006

O
O

NH

R1

R2

R3

25 NO H O
N 3.485 3.527 -0.042

26 N H O
N 4.110 4.158 -0.048

27 NHN H O
N 3.934 3.876 0.058

28
N

N H O
N 3.875 3.894 -0.019

29 N H O
N 4.135 4.102 0.033

30* N H O
N 3.473 3.559 -0.086
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31 N H O
N 3.366 3.405 -0.040

32
H
N H O

N 3.469 3.436 0.032

33*
H
NBr H O

N 3.401 3.454 -0.053

34*
H
NO2N H O

N
3.508 3.568 -0.061

35
H
NF H O

N 4.122 4.069 0.052

36 N
H

O H O
N 3.546 3.506 0.040

37
H
NO H O

N 3.967 3.944 0.023

Table 1: Molecular structure and anticonvulsant activities of dataset molecules.
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Dataset Division 
Modified K-Medoid clustering algorithm proposed by (Park 

& Jun, 2009) [15] available in Modified KMedoid version 1.2 was 
used to divide the database into training set for model development 
and test set for model validation. The algorithm proceeds via 
three main steps which are, selection of initial Mediod, update of 
selected mediods and assignment of object to mediods. In the first 
step, given n numbers of objects having p number of variables 
(descriptors) each, they were grouped into given k clusters, where 
k < n. Defining the variable of object i as Xia (i = 1,. . .,n; a = 1,. . 
.,p). The Euclidean distance (dij) between two object i and object j 
was calculated:

     i = 1, …….., n and j = 1 ….. n    	 (1)

Scaled Euclidean distance ( ) for each object was calculated 

by dividing the distances by sum of the entire distances. The  
for objects in each cluster k was arranged in ascending order and 

objects with smallest values in each group are selected as the 
initial most middle objects in a cluster (mediods). The objects were 
re-shuffled to obtain initial cluster by assigning each object to the 
nearest medoid. The sum of distances from all objects to their 
medoids was calculated and kept for comparison. 

To update the mediods, a new medoid of each cluster was 
found, which is the object minimizing the total distance to other 
objects in its cluster. Then the current medoid in each cluster is 
updated by replacing with the new medoid. Then (the third step), 
each object is assigned to the nearest medoid resulting to the 
formation of new k clusters. The sum of distance of objects to 
their mediods (total cost distance) was re-calculated. Now, if the 
total cost distance is equal to the previous one, the algorithm stops, 
otherwise, it goes back to the second step [15].

Transformation of Descriptor Values
Molecular properties are often measured in different unit 

and regression analysis frequently produces equation that favors 
property with higher magnitude of measurement [10]. To give all 
properties (descriptors) equal chance of appearing in the models 
produced in the study, descriptor values were transformed by 

normalization method using the equation below:

  					     (4)

Where  is the normalized descriptor, Xi is the original 
descriptor value, Xmax and Xmin are the maximum and minimum 
descriptor value respectively in a descriptor column of the database 
[16].

Selection of Most Desirable Descriptor
Using the training set data only, combinations of descriptors 

that were optimally correlated with the anticonvulsant activity 
of the dataset molecules were selected using Genetic Function 
Algorithm (GFA) available in Materials Studio 7.0. GFA is a 
frequently used method that utilizes genetic algorithm to select 
combinations of descriptors that can be used to produce models 
and multivariate adaptive regression splines algorithm to evaluate 
the fitness of the models [17]. It has the advantage of producing 
of multiple models via repeated runs and automatically selects and 
determines the exact number of descriptors needed to build a full-
size model. 

Construction and Validation of QSAR Models
The combinations of training set descriptors reported by the 

GFA variable selection were collected in separate spreadsheets 
for both training and test sets. These spread sheets were imported 
into the MLRplusValidation1.3 [18] to calculate various internal 
and external validation parameters. Furthermore, the presence of 
multicolinearity problem among descriptor blend that made up a 
model was checked with Variance Inflation Factor (VIF) value for 
each descriptor i:

 	  			              (10)

Where   is the coefficient of determination of the regression 
of descriptor i on all the other descriptors. VIF value greater 
than 10 indicates high degree of correlation among descriptors 
(multicolinearity problem) [19]. Full explanations of the various 
validation parameters used were presented in (Table 2).
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Symbol Definition and allowed threshold Ref.
Internal validation (validation with the training set data)

LOF Lack of fit, the smaller the value the better the model Arthur 2016 [16]

R2 Determination coefficient for training dataset, R2 > 0.5 indicate goodness of fit

Tropsha, 2010 [10]

R2
adj Adjusted determination coefficient for training dataset. R2

adj > 0.5 indicate good internal robustness

F Variance ratio

Q2
LOO

Square of correlation coefficient for leave one out cross-validation. Q2
LOO  > 0.5 indicate good internal 

robustness
PRESS Predicted error sum of square
RMSEP Root mean square error of prediction

cR2
p Y-randomization(scrambling) parameter, cR2

p > 0.5 indicate the model is not by chance correlation Roy. 2007 [20]

External validation (validation with test set data) based on regression coefficient R

R2
(pred) Predicted determination coefficient for the test set data, R2

(pred) > 0.6 indicate good predictive ability

(Golbraikh and 
Tropsha, 2002) [21]

  are the square of correlation coefficient for the plot of predicted versus observed activity for 
test set with and without intercept respectively. If the value of the parameter is < 0.1 then, the model is 

predictive

k Slope for the plot of predicted versus observed activity for test set data. 0.85 ≤ k ≤ 1.15 indicate model 
is predictive

is the square of correlation coefficient for the plot of observed versus predicted activity for test set 
data. If the value of the parameter is < 0.1 then, the model is predictive

k′ Slope for the plot of observed versus predicted activity for test set data. 0.85 ≤ k′ ≤ 1.15 indicate model 
is predictive

|r2
0-r

’2
0|  and  are as defined above, |r2

0-r
’2

0| indicates the model is predictive

External validation based on error measure

AE 	 Average error for the test set data. (AAE- |AE|)< (0.5 ×AAE) indicate presence of systematic 
error in the model

(Roy et al., 2016) 
[22]

AAE 	 Average absolute for the test set data,

R2
res

	 Square correlation coefficient for the plot of residual against measured activity values of the 
test set data, R2

res > 0.5 indicate presence of systematic error in the model

MAE

Mean absolute error for the test set data. (a) MAE  0.1  training set response range or MAE + (3 

 σ)  0.2  training set response range indicate good prediction. (b) MAE > 0.15  training set 

response range or MAE + (3  σ) > 0.25  training set response range indicate bad prediction. (c) Any 
prediction that does not fall into condition (a) and (b) may be considered as of moderate quality. Note, 

σ denotes the standard deviation of the absolute error values for the test set data.

Table 2: QSAR model validation parameters.
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Models Applicability Domain (AD)
The AD is the structural and chemical space of a QSAR 

model where it can make a reliable prediction [23]. Degree of 
extrapolation method was used to define AD in the study. It uses 
leverage (hi) values for each compound obtained as the diagonal 
elements of a hat matrix and standardized residual (SDR) produced 
by the models.  Williams plot (graph of SDR versus hi) gives a 
quick pictorial representation of AD in this method. Hat matrix H 
was computed with the equation below:

		  (17)

Where X represents the descriptors matrix and XT is the 
transpose of the matrix. The diagonal elements of H are leverages 
for each compound. Leverage threshold (h*) for a model was 
computed with the equation below: 

 			   (18)

where n is the number of compounds in the training set 
only and k is the number of descriptors in the model. SDR was 
computed with the equation below:

  						   
		   	               (19)

Where n is the number of compounds in the training set. Ypred 
and Yobs are the predicted and experimentally observed activity 
values respectively. A compound with hi > h* for a model is 
structurally dissimilar to other members of the model training set 
i.e. an influential data and prediction for such compound by the 
model are not reliable. A compound with SDR > ± 3 is an outlier 
in the response space of the model [23]. 

Results and Discussion 
Training Set and Test Set Data Structure  

The clustering method used divivded the entire data into 26 
training set (70% of the entire dataset) and 16 test set (30% of the 
entire dataset). The test compounds were marked with asterisk in 
Table 1. The plot of normalized mean distance against the observed 

anticonvulsant activity for both training and test set (Figure 1) 
showed that test set data was distributed within the descriptor 
space of the training set data. This showed that the data division 
method used performed well.

Figure 1: Diversity analysis.

QSAR Models and Validation Parameters
The top three models produced by the GFA-MLR method 

used in the study were presented in Equation 4 to 6. These QSAR 
models were obtained from 26 training set data and contained 4 
descriptors each, meaning their Toplis ratio was 6.5. Hence, they 
do not violate the QSAR semi-empirical rule of thumb [24]. 

pED50 = 2.82476(+/-0.04039) + 0.34501(+/-0.04531) AATSC8m 
- 0.58205(+/-0.04129) MATS3m + 	1.52741(+/-0.05204) Mp + 
1.07807(+/-0.04242) SHCsats				    (4)

pED50 = 2.74577(+/-0.05619) + 1.64954(+/-0.07662) AATS2p + 
0.45055(+/-0.06123) AATSC8m -	 0.77332(+/-0.0607) MATS3m 
+ 1.13355(+/-0.05959) SHCsats			   (5)

pED50 = 2.68245(+/-0.05494) + 0.65755(+/-0.05892) AATSC8m 
- 0.74266(+/-0.05605) MATS3m + 	1.11772(+/-0.0558) SHCsats 
+ 1.55598(+/-0.06817) TDB2p				    (6)

Correlation analysis carried out on the descriptors contained 
in each model showed the highest absolute correlation coefficient 
between descriptors was 0.667 (Table 3). This indicated that 
descriptors contained in the models were relatively orthogonal 
to one another. Their VIF values (Table 3) further confirmed 
there was no multi-co-linearity problem in the models reported. 
Detailed quality and validation parameters values for the models 
were presented in (Table 4) These results showed that the models 
had good internal and external predictive ability and were void of 
systematic error. 
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Equation 4
AATSC8m MATS3m Mp SHCsats VIF

AATSC8m 1 1.077
MATS3m 0.194 1 1.252

Mp 0.001 0.362 1 2.240
SHCsats 0.156 -0.085 -0.677 1 2.011

Equation 5
AATS2p AATSC8m MATS3m SHCsats VIF

AATS2p 1 2.636
AATSC8m -0.010 1 1.066
MATS3m 0.459 0.197 1 1.485
SHCsats -0.677 0.135 -0.086 1 2.121

Equation 6
AATSC8m MATS3m SHCsats TDB2p VIF

AATSC8m 1 1.114
MATS3m 0.228 1 1.399
SHCsats 0.151 -0.026 1 2.060
TDB2p -0.126 0.364 -0.677 1 2.442

Table 3: Models correlation matrix and variance inflation factor.

Parameters/Models Eq. 4 Eq. 5 Eq. 6 Threshold value Comment
Internal validation (validation with the training set data)

LOF 0.087 0.092 0.097 Low value
R2 0.980 0.963 0.967 >0.6

Robust models with good internal predictive ability 
(Tropsha, 2010) [10]

R2
adj 0.976 0.957 0.961 >0.6

F 258.3 139.3 155.8
Q2

LOO 0.971 0.948 0.948 >0.5
RMSEP 0.083 0.096 0.067
PRESS 0.047 0.085 0.076

cR2
p 0.909 0.886 0.891 >0.5 Model  void of  chance correlation (Roy, 2007) [20]

External validation (validation with test set data) based on regression coefficient R
R2

(pred) 0.897 0.861 0.931 >0.6

Robust models with good external predictive ability 

(Golbraikh & Tropsha, 2002) [21]

r2 0.736 0.739 0.837 >0.5
r2

0 0.723 0.617 0.809 >0.5
r’2

0 0.708 0.738 0.837 >0.5
|r2

0 - r’
2
0| 0.015 0.121 0.027 <0.3

0.018 0.165 0.033 <0.1
k 0.996 0.999 1.000 0.85<k<1.15

0.038 0.001 0.001 <0.1
k’ 1.0003 0.999 0.999 0.85<k<1.15

External validation based on error measure
R2 (res. vs. obs.) 0.131 0.036 0.014 <0.5 Models was void of systematic error 

(Roy et al., 2016) [22]
nPE/nNE 0.833 1.200 1.750 <5

MPE/MNE 0.995 0.987 0.692 <2
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MAE(95% data) 0.059 0.066 0.059 Models made good predictions

(Roy et al., 2016) [22]SD(95% data) 0.027 0.040 0.022

Table 4: QSAR models validation scores.

Although the models reported were of good quality, the aim of all QSAR practitioners to improve the quality of prediction by 
reducing predicted residuals for test/query compounds to the barest minimum. To achieve this aim, intelligent consensus modeling [25] 
available in Intelligent Consensus Predictor version 1.1 software was applied on the models. Intelligent consensus modeling combined 
the proposed validated individual models (Equation 4 to Equation 6), and it carefully accounted for carefully accounting for the different 
assumptions characterizing each model. The optimized software setting for the study was without the entire additional criteria (i.e. 
Euclidean distance cutoff, applicability domain criteria and Dixon Q-test), a similar condition reported in literature [25]. 

The test-set validation parameters for individual models as well as consensus models obtained were reported in (Table 5). In the 
table, IM1, IM2 and IM3 represent the Eq. 4, Eq. 5 and Eq. 6 respectively. While, CM0 is the ordinary consensus model which uses 
simple average of prediction of individual model for all compounds in the test set; CM1 is the intelligent consensus model1 which uses 
the average of predictions from all qualified individual models; CM2 is the intelligent consensus model 2 which uses Weighted Average 
Predictions (WAPs) from all qualified individual models; and CM3 is the intelligent consensus model 3 which uses the best selection of 
predictions (compound-wise) from individual models [25].

Model Q2f1 Q2f2 Q2f3 CCC MAE MAE
(95%) PRESS PRESS

(95%) SDEP SDEP
(95%)

IM1 0.890 0.698 0.919 0.847 0.646 0.107 0.074 0.063 0.076 0.043 0.083 0.065

IM2 0.861 0.617 0.897 0.844 0.643 0.144 0.079 0.067 0.102 0.059 0.096 0.077

IM3 0.931 0.809 0.949 0.912 0.788 0.097 0.064 0.060 0.051 0.040 0.068 0.063

CM0 0.921 0.781 0.941 0.897 0.753 0.047 0.063 0.055 0.058 0.037 0.073 0.061

CM1 0.921 0.781 0.941 0.897 0.753 0.047 0.063 0.055 0.058 0.037 0.073 0.061

CM2 0.919 0.776 0.940 0.893 0.743 0.015 0.063 0.054 0.060 0.037 0.074 0.061

CM3 0.897 0.716 0.924 0.855 0.661 0.099 0.071 0.060 0.080 0.048 0.085 0.069

Table 5: Test set validation parameters for individual model and consensus model.

In the table, CM0 was ordinary consensus model in which 
simple average of prediction of individual model for test set 
compounds as used. CM1 was intelligent consensus 1in which 
the average of predictions from all qualified individual models 
for a given compounds were used. CM2 was intelligent consensus 
2 in which uses weighted average predictions (WAPs) from all 
qualified individual models for a given test set compounds was 
used. Finally, CM3 was intelligent consensus 3 in which uses the 
best selection of predictions (compound-wise) from individual 
models was used [25].

Comparing the three individual models (IM1-IM3) with the 
three intelligent consensus models (CM1-CM3), it was obvious 
that the values of external validation parameters were better in 
almost all the cases for consensus models. The mean absolute 
error MAE (95%) metric for intelligent consensus models CM1 

to CM3 were lower compare to that of individual models (Table 
5). CM2 emerged as superior to all other models with MAE (95%) 
0.054 (Table 5). CM2 was used to predict the activity of the entire 
data and the predicted activity values were reported in Table 1. 
The predicted test set activity values for the entire dataset by the 
individual models (IM1-IM3) and the intelligent consensus models 
(CM0-CM3) were presented in Table S2 of the Supplementary file.

Linear relationship existed between the experimental and 
predicted activity values by the CM2 (Figure 2) and there was even of 
its predicted activity residuals around the line standardized residual 
equal zero (Figure 3). These observations indicated that the model 
had good internal and external predictive capability and also void 
of systematic error. Therefore, it can be used to make prediction 
for known molecule without activity, provided the molecule 
is in the applicability domain (AD) of the developed models.
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Figure 2: Models predicted versus experimental activity values for the data set molecules.

Figure 3: Models standardized residual against experimental anticonvulsant activity values.

Models Applicability Domain
The William plots for the models (Figures 4-6) showed that all dataset molecules had leverage value less than less than the models 

threshold leverage (h* = 0.57) and their standardized residual (SDR) were less than ±2.5. This indicated that all molecules were within 
the applicability domain of the models defined by the square area 0 < hi < h* and -2.5 < SDR < 2.5.  Hence, the models reported were 
able to predict the activity values for all dataset molecules with high level of reliability. In summary, the models had high-quality 
parameters and great predictive power for molecules within their AD.
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Figure 4: Williams plot defining the applicability domain of QSAR model represented by Equation 4.

Figure 5: Williams plot defining the applicability domain of QSAR model represented by Equation 5.

Figure 6: Williams plot defining the applicability domain of QSAR model represented by Equation 6.
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Descriptors Interpretation 
A QSAR model can be used as knowledge generator to improve the biological activity under consideration for any molecule. 

Interpretation of the model descriptors usually played a major role in this endeavor. Therefore, attempt was made in the study to a brief 
interpretation for descriptors contained in the reported QSAR models. Table 6 contained definition of descriptors shared by reported 
models; their average regression coefficient and incidence.

No. Descriptors Physical meaning ARC(I)

1 AATSC8m Average/centered autocorrelation of topological structure -lag8/weighted mass 0.484(3)

2 AATS2p Average autocorrelation of topological structure -lag2/weighted by polarizability 1.649(1)

3 MATS3m Moran autocorrelation – lag 3/weighted by relative atomic mass -0.699(3)

4 Mp Mean atomic polarizability (scaled on Carbon atom) 1.527(1)

5 SHCsats Sum of atom-type H E-State: H on C sp3 bonded to saturated C 1.109(3)

6 TDB2p Topological distance based autocorrelation - lag 9 / weighted by polarizability 1.555(1)

Note: ARC (I) is average regression coefficient (incidence).

Table 6: Molecular descriptors, their regression coefficient and incidence.

AATSC8m, AATS2p and MATS3m were 2D spatial-
dependent autocorrelation descriptors calculated on a molecular 
graph with the use of Broto-Moreau coefficient (in the case 
AATSC8m and AATS2p) and Moran coefficient (in the case of 
MATS3m) [26]. AATSC8m measures the strength of the connection 
between relative atomic masses of two atoms in a molecular space 
separated by eight bonds (lag 8). It had positive average regression 
coefficient and appeared in the three models (Table 6). AATS2p 
measures the strength of the connection between polarizability 
of two atoms in a molecular space separated by two bonds (lag 
2). Also had positive average regression coefficient and with one 
incidence in the entire models (Table 6). While MATS3m measures 
the strength of the connection between relative atomic masses of 
two atoms in a molecular space separated by three bonds (lag 3), 
it was negatively correlated with the anticonvulsant activity of 
the studied dataset (Table 6). It also appeared in the three models. 
Therefore, increment in values of AATSC8m and AATS2p 
augments the anticonvulsant activity value of dataset molecules, 
while, that of MATS3m diminishes the activity. 

Mp was a 2D constitutional descriptor defined as mean 
atomic polarizability scaled on Carbon atom [14]. It was positively 
correlated to the anticonvulsant activity of the studied dataset 
and occurred in one of the model (Table 6). SHCsats is a 2D 
electrotopological-state index of an atom which unifies in a single 
index both electronic and topological description of a molecule 

[27]. It is defined as Sum of atom-type H on C sp3 bonded to 
another saturated C. It had positive regression coefficient and 
incidence of three (Table 6). TDB2p is 3D topological distance 
based autocorrelation - lag 2 / molecular polarizability. It is a 
member of the 3D autocorrelation descriptors [28] which uses 
both Euclidean (geometric) and topological distances to encode 
information about molecular structure. TDB is an index of shape 
and branching of molecules [26]. It occurs in one of the model 
reported and it’s positively correlated to the anticonvulsant activity 
of dataset molecules. 

In summary, the descriptors contained in the reported models 
suggested that increment in the molecular mass and polarizability 
will improve the anticonvulsant activity of the dataset molecules. 
This can be achieved via chain elongation to increase the value 
of SHCsats, AATSC8m and addition of electronegative elements 
which will be favorable to the values of AATS2p, Mp and TDB2p.

Conclusion
Anticonvulsant activity of some 3-aminopropane-1,2-

diol and 1-aminoethane-1,2-diol derivatives were successfully 
model via QSAR strategy. The QSAR models obtained had good 
statistical quality: LOF (0.087 to 0.097), R2 (0.963 to 0.980), Q2 
(0.948 to 0.971), F (139.3 to 258.3), R2

pred (0.861 to 0.931) and 
mean absolute error after removal of 5% data i.e. MAE (95%) 
(0.059 to 0.066). Intelligent consensus 2 (CM2) with MAE (95%) 
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of 0.054 was the golden model for making prediction in the 
study. The result in the study showed that AATSC8m, AATS2p, 
MATS3m, Mp, SHCsats and TDB2p descriptors had influence on 
the anticonvulsant activity values of dataset molecules. Therefore, 
increase in molecular mass and polarizability of dataset molecules 
is favorable for improving their anticonvulsant activity values. 
The models reported were robust and with good predictive ability. 
Their applicability domains were well defined and they can have 
used to virtually design and screen molecules for anticonvulsant 
activity.
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