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Abstract
Acute Respiratory Distress Syndrome (ARDS) affects approximately 190,600 patients per year in the United States, with 

mortality up to 45%. ARDS can occur as primary disease due to various factors (e.g. bacterial or viral pneumonia, lung contusion 
and toxic inhalation) or as secondary disease due to sepsis, pancreatitis and severe trauma. We hypothesized that ARDS-affected 
individuals have patterns of variants in their physiological repertoire that can be tracked, identified and utilized clinically. The 
goals of this study were to: (1) characterize the landscape of variants within protein coding and UTR regions in ARDS using 
an Exome sequencing approach; and (2) determine the variations in signaling pathways and identify functional consequences 
of ARDS. Towards this, we assessed an ARDS-affected individual, GP7, in the context of unaffected family members as well 
as unrelated individuals with ARDS, in order to elucidate underlying inheritance patterns of “private variants”. Private variants 
consisted of variants shared by ARDS cases but not found in unaffected individuals. Whole exome sequencing yielded 3,516 
variants (represented by 2,354 genes), that were highly enriched in the primary case, GP7. Of these, there were 128 private 
variants and ~19% of these represented novel variants derived from this study. Variants identified and subsequent gene mapping 
analysis, demonstrate that there are important biological pathways and functions that distinguish ARDS cases from non-ARDS 
individuals. These include cell death and survival and liver hyperplasia/hyper proliferation. These in-silico discoveries highlight 
novel variants shared by ARDS cases, which can be further explored in deeper learning of ARDS. 
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Introduction 
Acute Respiratory Distress Syndrome (ARDS) is a 

syndrome of hypoxic respiratory failure characterized by diffuse 
pulmonary infiltrates and accumulation of protein-rich pulmonary 
edema that cause reduction in lung compliance alveolar collapse 
and ventilation-perfusion mismatch [1-6]. ARDS affects 
approximately 190,600 patients per year in the United States, 
with mortality up to 45% [7]. Despite improvements in intensive 
care during the last fifteen years, ARDS is still the major cause of 
mortality and morbidity in intensive care [1,2,5-7]. In fact, ARDS 
therapy has seen limited progress since its initial description 
in 1967 and management is still largely supportive, with no 

established therapies targeted at the primary disease processes [8]. 
Accordingly, there is a need for methods of early detection [9]. 
There has been recent recognition of the clinical and biological 
heterogeneity within ARDS [10-12] that reflects our incomplete 
ARDS 3 3 understanding of the biology of ARDS. Additional 
contributions to the knowledge about inheritance of ARDS and/
or pathogenesis will be of great benefit in moving forward with 
successful clinical translation of new diagnostic, preventive, and 
therapeutic strategies [13-16]. 

ARDS occurs within one week of a known clinical insult 
or after worsening of respiratory symptoms. It is a consequence 
of various risk factors including direct (e.g., bacterial or viral 
pneumonia, gastric aspiration, lung contusion, toxic inhalation, 
and near drowning) or indirect (e.g., sepsis, pancreatitis, severe 
trauma, massive blood transfusion, and burn) lung injury [1-6,17-
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19]. There is little knowledge on the temporal relationship between 
detectable inflammatory changes and the onset of increased lung 
density, which is the current radiographic diagnostic marker 
for ARDS. A better understanding of these key temporal and 
topographic processes may contribute to advance diagnostic and 
prognostic biomarkers and effective therapies [7,20-22]. Genome 
sequencing studies on ARDS have concentrated on identification 
of plasma biomarkers that may facilitate diagnosis of ARDS which 
could, in theory, improve clinical care, enhance our understanding 
of pathophysiology, and be used to enroll more homogeneous 
groups of patients in clinical trials of new therapies, increasing the 
likelihood of detecting a treatment effect [2,23-28]. 

Most recently, exome sequencing studies have been reported 
for ARDS as part of an outgrowth of the NHLBI’s Exome 
Sequencing Project [29,30]. A potential limitation of these studies 
is that they have rarely been conducted on families with sample 
collection across several generations. An advantage of exome 
sequencing is that it allows for the analysis of “private” gene 
variants-variants that may have arisen de novo in one individual 
or family and thus would not be detected in another [30]. We 
hypothesized that ARDS-affected individuals have patterns 
of variants expressed in their physiological repertoire that can 
be tracked and utilized to complement approaches to clinical 
diagnosis and/or clinical monitoring. To address this hypothesis, 
we utilized an exome sequencing approach, which focuses on just 
the protein coding but also UTRs sequences in a given sample. 
Our data indicates that, there are unique variants and signaling 
pathways in ARDS cases which differ from those observed in 
unaffected individuals; and that the variant expression patterns 
observed in the familial cohort are markedly different from that of 
unrelated ARDS cases.

Materials and Methods 

Study information and Sample Collection 

Family members and control cohort were recruited, enrolled 
after informed consent under a protocol approved by the Human 
Subjects Protection Office and Institutional Review Board from 
the Pennsylvania State University College of Medicine. Three sets 
of samples were collected: primary ARDS case, and related family 
members; a third set of samples from unrelated ARDS subjects 
used in the present study were collected as previously described 
[31,32]. Together, we analyzed a total of 18 samples.

Whole Exome sequencing analysis and data collection 

The workflow in Figure 1 outlines the key steps involved 
in sample data collection, data filtering and the downstream data 
analysis processes that we applied to the sequencing output in order 
to perform comparisons. Variants for each sample were identified 
based on the GATK [33] best practices pipeline. The bwa v0.7.3a 
software were used to align the paired end exome sequences to 

the hg19 reference and the Picard v1.102 Mark Duplicates tool 
was used to remove duplicates. Local realignment around indels 
was performed by running the GATK Realigner Target Creator and 
Indel Realigner tools, using the Mills and 1000G Gold Standard 
indels as the known indels. Base quality score recalibration was 
performed using the GATK Base Recalibrator tool with dbSNP 
build 138 and the Mills and 1000G Gold Standard indels as known 
sites, followed by GATK Print Reads. Variants were called using 
the GATK Haplotype Caller tools with the following parameters: 
ERC GVCF, LINEAR variant index type and 128000 variant 
index parameter followed by the GATK Joint Genotyping tool. 
The ANNOVAR v2015-03-22 [34] was used to functionally 
annotate the genetic variants, including when applicable gene 
membership (e.g. intron), conservation, nonsynonymous amino 
acid substitution, SIFT prediction, Polyphen2 prediction, etc. 

Filtering and Classification of Variants

Ingenuity Pathways Analysis (IPA) was used to determine 
genes associated with ARDS from the curated literature, and to 
identify significantly enriched canonical pathways, networks, 
diseases and biological functions and upstream regulators from 
amongst filtered list of variants [35]. For our first step in identifying 
enriched variants, we extracted variants based on the primary case 
(GP7), control samples from the family members (GP3-5 and 
GP8) and ten unrelated ARDS cases, (JF9-18). While samples 
GP1, GP2, and GP6 were disease free, we excluded them from our 
controls since these originated from younger individuals and we 
were focused on late onset of ARDS during adulthood. However, 
these samples were later utilized in all follow-up clustering 
analysis performed to assess variant inheritance patterns. Enriched 
variants were filtered using the following set of criterias: (1) that 
GP7, which was the primary case in the family samples, had the 
variant; (2) at least 2 of the reduced (n=4) family controls didn’t 
have the variant; (3) at least 2 of the ten (JF 9-18) samples had the 
variant and; (4) that there were at least twice as many unrelated 
cases with the variant than without the variant. Using this criteria, 
we generated the list of variants enriched in our case sample, GP7, 
which were represented across 16 gene/exonic functional features. 
Next, these enriched variants were then classified into functional 
subsets for further analysis. The variants were categorized 
according to their respective genes and placed into separate 
groups. They were grouped from A-D, based upon the following 
criteria: (1) Group A comprised of literature genes curated from 
ARDS-related studies currently available in IPA; (2) Group B 
comprised of variants represented by exonic genes affecting stop 
codon, genes with frameshift mutations and non-synonymous 
mutations; (3) Group C- comprised of variants represented by 
genes (which included all genes from Group B) plus genes found 
within the 3’ UTR, 5’ UTR, and non-coding RNAs and; (4) Group 
D consisted of variants that were represented by genes shared by 
GP7 and all JF unrelated ARDS cases from this study. IPA analysis 
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was performed for each group of genes.

Statistical metrics applied to pathway analysis

IPA [35] applies statistical assessments to determine pathway 
relationships for a given list of genes. To apply the underlying 
statistical metrics for a given dataset, we first uploaded a list of 
genes and performed a Core Analysis with the default settings in 
IPA. The Canonical Pathway Analysis in IPA associates the genes 
with the canonical pathways in Ingenuity’s Knowledge Base and 
returns two measures of association: (1) a ratio of the number of 
genes from the list that maps to the pathway divided by the total 
number of genes that map to the same pathway and; (2) a p-value 
of the Fisher’s exact test. To identify ARDS-specific significant 
gene sets that were within the top scoring targets from pathway 
assessments of the list of genes, we examined the top pathways 
from the following five IPA analysis modules: (1) canonical 
pathways; (2) upstream regulators; (3) diseases and bio functions; 
(4) Toxicity (tox) functions and; (5) networks. A Bonferroni 
correction (i.e. p value < 0.05/25 = 0.002) was applied to the 
p-values in order to maintain the type I error at 5%. For the top 
gene sets obtained from the query gene list, we kept genes with 
consistent empirical and biological relationships. The biological 
relationships between genes in a canonical pathway are referred to 
as IPA pathways. Using the biological relationships from the IPA 
pathway and the top genes in the canonical pathway as references, 
we derived a correlation trend between ‘Within Patient Expression 
Changes’ (WPEC) and ‘ordered categorical Multiple Organ 
Failure’ (ocMOF) labels that were biologically driven for all genes 
in the same pathway [23]. If this trend is consistent with the one 
computed from the data, the gene is retained and used to compute 
the dominant trajectory. The IPA pathway provides a graphical 
representation of the biological relationships between genes in 
a canonical pathway, where nodes represent genes and edges 
represent the biological relationships. Each edge is supported by 
at least one reference from the literature, a textbook, or canonical 
information stored in the Ingenuity Pathways Knowledge Base, 
providing us a relationship summary between genes. A -log 
p-value of 1.30 represented the cutoff for statistical significance 
(i.e p-value<0.05) thus any pathway with a value less than this, 
was filtered out of our final dataset.

Clustering of variants and heatmap assessments 

The filtered variants were extracted and parsed for all samples 
from the study. These tables were then imported into an excel 
spreadsheet and calculations were done for the presence (assigned 
a 1) or absence (assigned a 0) of variants within a specific sample 
using VB scripting [36]. The final csv file was uploaded into R 
[37]. We then applied the ‘Heatmap’ and ‘clustergram’ scripts 
using R packages g plots g data, g tools, and rcolorbrewer to render 
a 2-d color image of the data showing the samples on the x-axis. 
To organize these data and identify potential relationships among 

presence/absence of specific variants, we utilized a hierarchical 
clustering with Euclidean distance metric and average linkage to 
generate the hierarchical tree. This type of clustering enabled us 
to find the similarity or dissimilarity between every pair of objects 
in the data set, group the objects into a binary, hierarchical cluster 
tree, and determine where to differentiate the hierarchical tree into 
clusters.

Clustering of genes and annotation analysis 

DAVID (Database for Annotation, Visualization, and 
Integrated Discovery) is a Web-based application that provides 
a high-throughput and integrative gene functional annotation 
environment to systematically extract biological themes behind 
large gene lists. High-throughput gene functional analysis with 
DAVID helps to provide important insights that allow investigators 
to understand the biological themes within their given genomic 
study [38-40]. We took gene lists from groups: (B), (C) and (D) 
(Table 2) and performed clustering analysis using the DAVID 
tool. We were unable to perform this type of analysis for group 
A, as the curated gene list was proprietary information within 
the IPA software and is retained by Agilent Biotechnologies. We 
performed all searches using the default parameters, as referenced 
in the software manual, based upon the “highest” classification 
stringency cutoff to obtain functionally related gene groups. For 
the annotation analysis generated from DAVID, we searched all 
human sequence related metadata available in the database and 
we then extracted the data to explore gene cluster relationships 
for each of our gene lists. DAVID uses a set of fuzzy classification 
algorithms to group genes based on their co-occurrences in 
annotation terms and ranks the gene groups using an internal 
(EASE) score [41].

Results 

Variants identified from a family with one ARDS case and 
unrelated ARDS cases

Figure 1 shows the workflow for data collection, data 
filtering, and data analysis utilized in the study. The family 
pedigree is shown in Figure 2. The individual that was the primary 
focus of the study is denoted as GP7. GP1, GP2, and GP6 were 
the youngest family members. Variants from each sample were 
identified and their frequency was calculated the primary case, 
GP7, comprised of 3,516 highly enriched variants that were 
represented by 2,354 genes. A summary of the annotated functions 
from the list of variants yielded the following characteristics: 
343 variants were exonic non-synonymous, 8 exonic frameshift, 
16 exonic non frame shift, 356 exonic synonymous, 16 exonic 
unknown, 66 ncRNA exonic, 2 exonic stop gain, 118 in the 5’UTR 
region, 782 in the 3’UTR, 1343 were intronic/ncRNA intronic, 
and the remaining variants were categorized as having upstream, 
downstream or intergenic functions (Table 1). 
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Heatmaps were generated from a ranked frequency 
occurrence assessment from the list of variants found to be shared 
between GP7 and each of the GP family samples (Figure 3A) or 
JF unrelated ARDS samples (Figure 3B). Figure 3A illustrates the 
variant expression patterns and clustered relationships between 
GP7 and each of the GP family members. Whereas, Figure 3B 
illustrates the variant expression patterns between GP7 and each 
of the ten unrelated ARDS cases (JF9-18). The red color in each of 
the heat maps denotes a presence of the same variant as found in 
GP7, and the green color denotes absence of the variant. Compared 
to the GP7 the next highest frequency of variants found amongst 
the family cohort was in the GP1 sample, which represented one of 
the younger family members (Figure 3A). This was accompanied 
by hierarchical clustering, which identified GP1 as the closest in 
variant expression pattern to GP7 (Figure 3A). 

Additional hierarchical clustering assessments showed that 
there were 2 clades within the family cohort. The first clade was 
comprised of GP7, GP1, and GP4. The second clade was comprised 
of GP3, GP6, GP8, GP5 and GP2. The clustering profiles indicate 
that the most similar sample to GP7 from the second clade was 
GP2 (Figure 3A). Furthermore, compared to GP7, JF14 was the 
highest scoring sample in terms of frequency of variants present 
as compared to any of the other unrelated controls (Table 2). 
Quantification of the variant occurrence frequency showed that 
JF14 was ~85.5% similar to GP7 (Table 2). Clustering profiles 
also demonstrated that JF14 was the most similar to GP7 in variant 
expression pattern, thereby it was clustered closest to GP7 (Figure 
3B). For the unrelated ARDS samples, JF10 had the lowest detected 
frequency of variants and was clustered to the farthest left of the 
heatmap with respect to GP7 (Table 2 and Figure 3B). The variant 
expression patterns show that JF10, JF16, and JF18 were the least 
similar to GP7, as depicted by the green colored regions denoting 
absence of the variant. As a result, these were all clustered to the 
farthest left (Figure 3B). Interestingly, heatmap assessments that 
included both family members and unrelated ARDS cases, showed 
that GP7 is most similar, in variant expression, to the unrelated 
ARDS cases as compared to the family members with the exception 
of JF10 (S1 Figure). Further comparison of the GP7 case and the 
unrelated ARDS cases showed that there were 128 variants shared 
between GP7 and all unrelated ARDS, which were represented by 
104 genes (Table 3). From this 104 genes, we found that ~19% of 
these were unique variants comprised of 24 variants represented 
by 9 genes (Table 4) and were not found in any of the other groups 
shown in Table 3. 3 of the 128 variants were also found in group B 
and were represented by the MYH14 gene. 

Prediction of ARDS-related biological pathways and functions 
from ARDS case enriched variants 

We extracted all pathway predictions for gene lists from 
groups (A), (B), (C) and (D) (Table 3). These were then compiled 

to review the statistical outcomes and determine unique pathways 
(S1 File). Variants were assessed for presence or absence in group 
(D) vs (A), (C) vs (A), and (B) vs (A), (S2 File). The outcomes 
from each assessment was a list comprised of variants identified 
along with their function and exonic information where appropriate 
(Additional file 2). Next, using the filtered genes from the GP7 case, 
we observed a ~2-fold and ~4.8-fold increase in the pool of ARDS 
genes for group (B) vs (A) and (C) vs (A), respectively (Table 3, 
Figure 4). Further assessment for each group individually based 
upon the presence or absence of statistically significant pathways 
and functions revealed one novel function, liver hyperplasia/hyper 
proliferation. The total number of genes found to be implicated 
in this function from (B), (C), and (D) was 387, 139, and 63 
respectively (Figure 5). To further place this finding in context of 
the overall number of genes present from each gene list, ~61% of 
the genes from list (D), as compared to 44% from (B) and 39% 
from (C) were implicated in this function (Figure 5, S1 File). This 
function was not detected in group (A) which was comprised of 
genes found in the ARDS literature (S1 File). 

Pairwise assessment of the biological pathways for genes 
derived from groups (B), (C), and (D) as compared to (A), showed 
that there were 6 significant pathways for (B), namely: Cellular 
Effects of Sildenafil (Viagra), CCR3 Signaling in Eosinophils, 
Inhibition of Matrix Metalloproteases, Actin Cytoskeleton 
Signaling, Choline Degradation I, and PRPP Biosynthesis I and 
none of these were previously identified as significant pathways 
in (A) (S3 File). There were 12 significant pathways for (C) and 
5 of these (Hepatic Fibrosis / Hepatic Stellate Cell Activation, 
Acute Phase Response Signaling, Death Receptor Signaling, 
Osteoarthritis Pathway, Airway Pathology in Chronic Obstructive 
Pulmonary Disease) were also predicted as statistically significant 
in (A) (S1 and S3 Files). The other 7 significant pathways (Choline 
Degradation I, RhoA Signaling, ATM Signaling, Inhibition of 
Matrix Metalloproteases, Role of PKR in Interferon Induction 
and Antiviral Response, Oxidative Ethanol Degradation III, and 
Glutamine Biosynthesis I), were not previously identified as 
significant pathways in (A). There were 7 statistically significant 
pathways for (D) and only 1 of these (Tight junction signaling) 
was also predicted as statistically significant in (A) (S1 and S2 
Files), whereas the other 6 (Acyl-CoA Hydrolysis, Ceramide 
Biosynthesis, Actin Cytoskeleton Signaling, PTEN Signaling, 
Formaldehyde Oxidation II (Glutathione dependent), and 
Epithelial Adherens Junction Signaling) were not. There were 
no pathways shared between (B), (C) and (D) as compared to A. 
However, there were 3 pathways shared by (B) and (C) (Inhibition 
of Matrix Metalloproteases, Actin Cytoskeleton Signaling, 
and Choline Degradation I). Three-way pathway interaction 
assessments resulted in the discovery of 1 biological process 
that was shared by group (A), (B), and (C) but was not present in 
group (D). This biological process contained genes with functions 
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in cell death and survival. We found there were 95, 123 and 237 
genes implicated in this function from group (A), (B), and (C), 
respectively (Figure 6). Of the 95 genes from (A), 82 were shared 
by (A), (B), and (C) (S3 File). The number of additional genes 
contributed from (B) and (C) was 41 and 155, respectively, and 
this correlated positively with the increase in the gene search pool 
(Figure 6, S4 File). Additionally, we found 3 variants (Chr8 pos. 
22020294 (intronic), Chr10 pos. 81316603 (3’ UTR), and Chr10 
pos. 81353921 (Intergenic)) from GP7 (Table 5) represented by the 
surfactant genes: SFTPC, SFTPA1, and SFTPA2, respectively. A 
search of these variants in the family and unrelated ARDS showed 
that there was a higher proportion of the unrelated ARDS cohort 
that had all 3 variants as compared to the family control cohort. 
Only 1 family member (GP4) had 2 out of the 3 variants (Chr8 
pos. 22020294 (intronic) and Chr10 pos. 81353921 (intergenic)), 
whereas at least 5 of the unrelated ARDS individuals had all 3 
variants.

Figure 1: Analysis Workflow. Outline of the workflow steps for data 
collection starting from the sample processing level, data filtering steps 
including pre-processing of the raw sequence data file and culminating in 
the final data analysis steps of assessments with the post-processed data.

Figure 2: Family pedigree. The pedigree represents the family for our 
primary case, GP7. Circles denote females and squares denote males. 
The empty circles and square are indicating those family members whose 
samples were not available for the study. GP7 is a female and represents 
our primary case. GP4, GP8, GP6, and GP3 are males. GP1 and GP2 
are females. GP1, GP2, and GP6 are the offspring of GP7 andGP3 and 
are also the youngest family members as they were<30 years old at the 
study’s inception.

Figure 3A: Heatmap of Family members and the GP7 case. The heatmap 
was generated using a hierarchical clustering algorithm applied to each 
GP sample as compared to GP7, based on the presence (colored in red) 
or absence (colored in green) of each individual variant. The samples 
clustered closest to GP7 indicate a high degree of similarity of variant 
occurrence. GP1 was the most similar to GP7. GP1 and GP4 form a clade 
with GP7. GP2 was the least similar to GP7.
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Figure 3B: Heatmap of unrelated individuals with ARDS and the GP7 
case. The heatmap was generated using a hierarchical clustering algorithm 
applied to each JF sample as compared to GP7, based on the presence 
(colored in red) or absence (colored in green) of each individual variant. 
The samples clustered closest to GP7 indicate a high degree of similarity 
of variant occurrence. JF14 was the most similar sample to GP7 and JF10 
was the least similar.

Figure 4: Relative gene frequency for IPA assessed gene lists. The variants 
from the study were categorized according to their respective genes and 
were subsequently placed in groups. They were grouped from A-D, based 
upon the following criteria: (1) Group A- comprised of 155 literature 
genes curated from ARDs-related studies; (2) Group B- comprised of 
363 variants represented by 314 exonic genes affecting stop codon, genes 
with frameshift mutations and non-synonymous mutations; (3) Group C- 
comprised of 1,376 variants represented by 973 genes (which included all 
genes from Group B) plus genes found within the 3’ UTR, 5’ UTR, and 
non-coding RNAs and; (4) Group D- 128 variants that were represented 
by 104 genes shared by GP7 and all JF control cases from the study. The 
y-axis represents the total count of genes that belong to each group. The 
x-axis denotes each of the gene lists.

Figure 5: Novel pathway function identified from variants. Liver 
hyperplasia/hyper proliferation was a novel function predicted 
for the IPA assessed groups C, B, and D (as represented in the 
bar graph by C, B, and D respectively), but was not a significant 
pathway predicted in group A, the ARDS literature gene list. The 
total number of genes predicted was highest in group C, which 
represents all genes from group B, plus genes found within the 3’ 
UTR, 5’ UTR, and non-coding RNAs.

Figure 6: Genes found to be predictive of cell death and survival 
functions. The bar graph illustrates the number of genes for which 
top molecular/cellular function was cell death and survival. 
Assessments were done for genes from Group A (155), Group 
A+B (155+314), and Group A+C (155+973). Of the 95 genes from 
Group A, 82 genes were found to be shared amongst groups A, B 
and C. Forty-one additional genes were identified from Group B 
+ Group A assessments, and 155 additional genes were identified 
in Group C + Group A assessments. Each pair of bars represents 
the frequency of genes in the search criteria and the frequency of 
genes identified as having a function in cell death and survival, 
respectively.
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SNP (Variant) Function # of Variants (SNPs) identified from GP7

UTR3 782

Intronic or ncRNA_intronic 1343

exonic_synonymous 356

exonic_nonsynonymous 343

Intergenic 321

Upstream or downstream 144

UTR5 118

ncRNA_exonic 66

exonic_unknown 16

exonic_nonframeshift 16

exonic_frameshift 8

exonic_stopgain 2

UTR5;UTR3 1

Variant function and the # of variants classified as having those related functions from the GP7 case. Functions were categorized based upon the 
filtered list of variants derived from those highly enriched in GP7.

Table 1: GP7 enriched variants and their function.

+Family member relationship to patient Sample identifier Frequency of variants found in sample
Daughter GP1 2231
Daughter GP2 548
Husband GP3 214
Brother GP4 1619

Uncle (paternal) GP5 403
Son GP6 106

Patient GP7 3516
Father GP8 286
Mother * N/A * N/A

Unrelated ARDS case JF9 2448
Unrelated ARDS case JF10 950
Unrelated ARDS case JF11 2532
Unrelated ARDS case JF12 2747
Unrelated ARDS case JF13 2853
Unrelated ARDS case JF14 3008
Unrelated ARDS case JF15 2981
Unrelated ARDS case JF16 2044
Unrelated ARDS case JF17 2956
Unrelated ARDS case JF18 2103

+The relationship of each family member to the GP7 case is shown. Unique identifiers for family members and unrelated JF samples as well as 
the frequency of variants detected in each sample compared to GP7 are shown in second and third column respectively. N/A denotes sample was 

unavailable for assay purposes.

Table 2: Variant frequency in GP family members and unrelated ARDS cases.
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Analysis group ID 
(from Fig 4)

Number of Genes in 
group Biological Description Sample group tag

A 155
literature genes curated from ARDS- related 

studies IPA/ARDS/literature genes

B 314

Exonic genes affecting stop codon and non- 
synonymous

mutations Exon/frameshift/stopgain/nonsyn

C 973

Exonic genes from Group B plus genes from 
3’ UTR, 5’ UTR,

and non-coding RNAs
Exon/frameshift/stopgain/nonsyn/3UTR/5U TR/

ncRNAexon

D 104 Genes shared by GP7
and all JF cases All ARDS cases shared genes

Group B, C, and D represented the genes derived from this study; Group A genes were those available in the ARDS literature for all biological 
pathway predictions using IPA.

Table 3: IPA analysis of groups of genes, unique identifiers, and biological functions.

Gene Name Variant location and exonic information
PPT1 chr1_40539076_40539076_C_T_UTR3_
PPT1 chr1_40539203_40539203_-_TGAT_UTR3_
PPT1 chr1_40539448_40539448_A_C_UTR3_
PPT1 chr1_40548900_40548900_A_G_intronic_

SORBS1 chr10_97116219_97116219_C_T_intronic_
CYFIP1 chr15_23004124_23004127_CTAA_-_downstream_
KDSR chr18_61022791_61022791_C_T_exonic_synonymous_SNV

MYH14* chr19_50796905_50796905_G_A_exonic_nonsynonymous_SNV
MYH14* chr19_50796960_50796960_C_T_intronic_
MYH14* chr19_50813169_50813169_A_C_UTR3_

ADH5 chr4_100006645_100006645_A_G_intronic_
ADH5 chr4_100009738_100009738_G_C_intronic_
APC chr5_112043384_112043384_T_G_UTR5_
APC chr5_112116632_112116632_C_T_intronic_
APC chr5_112164561_112164561_G_A_exonic_synonymous_SNV
APC chr5_112175770_112175770_G_A_exonic_synonymous_SNV
APC chr5_112176325_112176325_G_A_exonic_synonymous_SNV
APC chr5_112176559_112176559_T_G_exonic_synonymous_SNV

FGFR4 chr5_176516953_176516953_A_G_intronic_
FGFR4 chr5_176517292_176517292_A_G_intronic_
FGFR4 chr5_176517326_176517326_T_C_intronic_
FGFR4 chr5_176517797_176517797_C_T_exonic_synonymous_SNV
FGFR4 chr5_176523562_176523562_C_A_intronic_

CNKSR3 chr6_154771277_154771277_A_G_exonic_nonsynonymous_SNV
MAGI2 chr7_77647322_77647322_T_C_UTR3_
MAGI2 chr7_77764591_77764591_C_A_intronic_

*Denotes the same gene represented by 3 variants which was also found present in group B genes (Table 3). All other genes and variants listed in the 
table were unique to ARDS cases (i.e. group D) and not found in any other group.

Table 4: Genes and variants shared across ARDS cases.
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Variants from Surfactant Genes Gene exonic function Gene Info CHROM POS POS

chr8_22020294_22020294_C_A intronic SFTPC chr8 22020294 22020294

chr10_81316603_81316603_C_T UTR3 SFTPA1 chr10 81316603 81316603

chr10_81353921_81353921_T_C intergenic SFTPA2 chr10 81353921 81353921

The column labeled “CHROM” denotes chromosomal location; the column labeled “POS” denotes the coordinate for the position of the variant 
within the chromosomal location.

Table 5: Surfactant genes found in GP7 case.

Emergence of clusters of orthologous genes across ARDS cases 

A series of data mining experiments were performed 
using the DAVID database resource. We conducted 3 separate 
experiments with genes from groups (B), (C), and (D). Genes from 
group (A) were excluded as these were proprietary and we did 
not have access to the raw file. We clustered genes from list (B) 
and (C) using the search parameters applied for high stringency 
similarity threshold (85%). We successfully matched 308 and 956 
genes from gene lists (B) and (C), respectively, based upon the 
availability of experimental and curated information in the DAVID 
database. The genes from (B) were categorized into 44 clusters 
(S5 File). The genes from (C) were categorized into 92 clusters 
(S6 File). In addition, a significant majority of group (B) (i.e. 
67%) and group (C) (i.e. 85%) was comprised of genes that had 
previously been experimentally verified and identified as having 
polymorphisms. For group (D), 104 genes were utilized for our 
initial database search and 101 genes were successfully matched 
to having DAVID ids.

Using the same stringency parameter as previously, the genes 
were categorized into 8 clusters (S7 File). The largest cluster for 
group (D) was comprised of 28% of the genes (29 genes out of 101). 
This cluster was annotated as having functions in transmembrane 
composition. Additional information from these output suggested 
that 71% (72) of the genes from group (D) were annotated as 
variants based upon previous experimental information contained 
in the DAVID database; 67% (i.e. 68 genes) had an identified role 
as polymorphisms; 42% (i.e. 42 genes) were splice variants; and 
45 of these genes were annotated by DAVID as having a role in 
post-translational modifications based upon the inclusion criteria 
that the protein is post translationally modified by the attachment 
of either a single phosphate group, or of a complex molecule, 
such as 5’-phospho-DNA, through a phosphate group. A follow 
up assessment using the Online Mendelian Inheritance in Man 
(OMIM) database, suggested potential roles for myosin light chain 
and myosin heavy chain genes in lung-related diseases. However, 
many of the other genes from groups B, C, and D revealed very 
little curated experimental information available in the OMIM 
database (S8 File). 

Discussion 

Previous genomic studies in ARDS have focused on 
characterization of subjects unrelated to each other in an effort 
to identify global genomic patterns and signatures that could be 
informative for diagnosis or prognosis [20,22,29,30,42]. Numerous 
studies have suggested that there is a delicate relationship between 
the gene and local environment in ARDS pathogenesis. It has also 
been noted that there is a physiological balancing act that plays a 
role in this dynamic process [3,4,7,14,20,43]. The relationship is 
such that the following two events must occur to give rise to the 
disease: First, an individual must have a genetic propensity and 
second their microenvironment must undergo a struggle to execute 
an appropriate response to local insult such as trauma, sepsis, or 
infectious trigger [1-6,17-19]. It is the combinatorial effect from 
these two events that preferentially activates the disease. We 
hypothesized that ARDS-affected individuals have patterns of 
variants in their physiological repertoire that can be tracked, and 
then these would complement clinical diagnosis and/or clinical 
monitoring. The goals here were (1) to characterize the landscape 
of variants within protein coding but we also studied UTR regions 
in ARDS using an Exome sequencing approach; (2), determine 
the variations in signaling pathways across ARDS; and (3) use 
computational approaches to explore the functional consequences 
of ARDS. The findings from this study showed that : (1) there are 
unique variants not found in unaffected individuals but shared by 
ARDS cases; (2) Coordinated signaling pathways shared by ARDS 
cases are different from those found in unaffected individuals; (3) 
Clustering analysis demonstrated that the GP7 case exhibited less 
similarity in variant expression when compared with related family 
members in contrast to higher similarity observed with ARDS 
unrelated individuals; (4) Validation of variants from ARDS cases 
represent opportunities for contribution to gaps in coverage within 
the ARDS literature (i.e. literature curated genes). 

The strategy undertaken in this study was to focus on a 
structured landscape. The structured landscape in this case was 
defined by the shared variant inheritance pattern represented 
across ARDS cases, and it consisted of two components: private 
variants (variants shared amongst ARDS cases) and public variants 
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(variants found in everyone). For ARDS, we believe that the variant 
inheritance pattern helps define the ARDS landscape in part. 
Our primary motivation was to elucidate underlying inheritance 
patterns of “private variants” that could be hidden within a larger 
cohort. Private variants consist of variants shared amongst ARDS 
cases but not found in the cohort of related family members. 
This is in contrast to public variants, which would consist of 
variants found broadly in both ARDS cases and ARDS-unaffected 
individuals. The question posed was, does a focused landscape of 
ARDS display a distinct variant pattern from person to person or 
is there a shared variant pattern? An important consideration for 
this study, was that there was a documented presence of ARDS 
based on family history. This past medical history could be tracked 
across a generation as demonstrated by the family pedigree from 
Figure 2.

The variants identified support our hypothesis that there are 
important biological pathways that could help distinguish ARDS 
cases from one another. In order to place these variants in the 
context of the available curated literature, it was important to parse 
out subsets of gene lists from the larger data. We observed that there 
was an increase in significant pathways predicted for the GP7 case 
when the search window of genes was increased by the addition 
of groups (B) and (C) genes to the ARDS-literature curated genes. 
The 3,516 variants from the primary case contributed a much more 
robust pool of candidate genes to utilize in performing pathway 
predictions. The increase in sample size (i.e. # of genes included in 
search criteria) contributed to an increase in detection power. This 
was due to the signal-to-detection ratio becoming much higher, 
thereby leading to observed increases in significant pathways 
predicted. The groups (B) and (C) genes served as representative 
subsets of the GP7 enriched variants. By using these subsets of 
variants, we captured a novel pathway prediction: liver hyperplasia 
and hyperproliferation, which we hadn’t previously observed when 
searching solely within group A. Liver hyperplasia and hyper-
proliferation is widely implicated in respiratory complications 
[44-47] and has also been documented in cases of secondary 
ARDS due to conditions such as acute pancreatitis [48,49]. Follow 
up studies would be necessary in order to determine if the genes 
within this pathway persist broadly across other ARDS cases. In 
an effort to characterize variant patterns across all ARDS cases 
from this study, we parsed out the group (D) genes. The group (D) 
genes represented an important subset because it was a much more 
condensed list of variants shared across ARDS cases (i.e. GP7 and 
all unrelated ARDS JF cases). Using group (D), we intentionally 
wanted to isolate any ARDS-specific pathways that may have been 
missed while searching the other gene lists. Group (D) assessments 
also enabled us to place into context the contributions of the larger 
subsets of variants from groups (B) and (C). The 24 variants 
represented by 9 unique genes from (D) offer potential candidates 
for validation. Additional identification of 3 surfactant genes in 

ARDS cases was also interesting in that it was not evident in the 
family cohort with the exception of 1 family member (who had 2 
out of the 3 gene variants). Surfactant genes have been implicated 
in ARDS across multiple studies and this finding is in line with 
their well-documented role [31,32,50,51]. 

Pathway assessments demonstrated that variants highly 
enriched in GP7, offered contributions to signaling pathways 
that previously weren’t found to be statistically significant for 
ARDS such as C-C chemokine receptor type 3 (CCR3) signaling, 
phosphoribosyl pyrophosphate (PRPP) biosynthesis, inhibition 
of matrix metalloproteases, choline degradation, glutamine 
biosynthesis, actin cytoskeleton signaling and epithelial junction 
signaling. These molecules have documented roles in lung 
pathogenesis and physiological signaling [24,27,52-54]. We 
speculate that these signaling molecules derived from GP7 could 
be important for the ARDS process. Of the 2,354 genes that were 
highly enriched in the GP7 case, we were also able to confirm some 
overlap with preexisting ones from the ARDS literature based 
upon our assessments with gene list A. The observed increases in 
the pool of ARDS genes from gene lists B (~2-fold) and C (~4.8-
fold) is most likely the contributing factor to the identification 
of these novel pathways. Our data also confirm the presence of 
shared pathways between ARDS literature genes (group A) and 
GP7 enriched gene subsets, including many implicated in lung 
pathogenesis such as airway pathology, acute phase response 
signaling, and hepatic fibrosis. These findings are in line with 
current information on ARDS from the available curated literature 
genes [26,54-59].

Interestingly, the family heatmap comparisons illustrate that 
the second highest frequency of variants found was in the GP1 
sample, representing one of the younger family members. This 
finding was strengthened by hierarchical clustering analysis shown 
in Figure 3A, which identified GP1 as having the highest similarity 
in variant expression pattern to GP7. This was a particularly 
curious finding because GP1 was the youngest family member, 
and had never been diagnosed with ARDS [15,60]. Recent 
findings indicate that younger persons can also get ARDS [61]. 
However, it is unclear what the consequences are for the variant 
inheritance pattern we observed in GP1 as this individual has not 
been diagnosed with ARDS, however further studies would be 
important so as to better determine what this discovery means. 
Additionally, a closer examination of the clade structure based 
upon clustering analysis shown in Figure 3A, displays a vastly 
different image from that of Figure 3B. To quantify the differences 
observed in Figure 3B, 7 out of the 10 ARDS controls had a high 
similarity in variant expression profiles. Whereas, 3 out of the 
10 ARDS controls exhibited a much different variant expression 
profile as demonstrated in the heatmap assessments. Thus, the 
contrast between Figure 3A and 3B is such that there was a higher 
proportion of variants shared amongst the unrelated ARDS than 
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within the family cohort. This indicates that basal expression 
patterns of variants exist, and that these are preferentially shared 
amongst ARDS cases. This presents an opportunity for us to 
better understand in future studies how this finding relates to 
clinical outcomes or disease severity for those outlier samples (i.e. 
samples clustered farther away from GP7 thereby denoting less 
similarity). However, the clinical implications of this observation 
remain unclear.

In a step towards developing a more generalized model, we 
applied clustering analysis for relationships between the groups of 
ARDS genes. The assessment of Clusters of Orthologous Genes 
(COGS) categories yielded pre-existing experimental information 
about the genes. The DAVID resource provided a streamlined 
approach for identifying the roles of previously discovered 
variants from ARDS-related genes, which was of benefit in our 
classification of the variants. Functional annotations retrieved 
showed that much of the genes, such as the myosin light chain 
genes, from groups A, B, and C had previously been identified as 
containing polymorphisms. These data are in line with previously 
published information while also highlight new possibilities for 
exploratory work and data sharing with the broader scientific 
community [62]. ARDS studies done on families with previous 
generations are very few [27]. As the genes identified carry specific 
variants, it will be important to understand the relationship of these 
variants across multiple ARDS cases. Based upon our findings, it 
is important to validate the variants whose function is currently 
unknown. The OMIM database, which is the primary inclusion 
criteria for the OMIM ontology, had a lack of enough experimental 
information on genes from groups B, C and D as relates to ARDS. 
This represents a gap in coverage within the literature for which 
one could contribute to experimental knowledge by validation and 
deposition of the variants from this study. 

Conclusions 

Taken together, the findings from this study promote the idea 
that there is a coordinated effort amongst signaling processes that 
underlie the pathogenesis of ARDS. This combinatorial signaling 
behavior has been well documented for lung pathogenesis and is 
implicated in ARDS. The study population represents an important 
demographic in helping understand the disease prevalence within 
a specific family in comparison to the unrelated ARDS controls. 
That said, the frequency of individuals sampled in the family 
cohort though not a large number, does show that there are some 
family members with a high degree of shared variant expression 
as compared to the primary case, GP7. We speculate that more 
work is needed to validate these additional variants and place 
them in the larger context of familial ARDS cases. These in-silico 
discoveries suggest a potential role for private variants shared by 
ARDS cases to be further explored in additional studies of ARDS. 
The potential outcomes would contribute to efforts geared towards 

deeper learning about the clinical consequences of these variants 
and broader thinking about cases for which family history suggests 
an underlying propensity for inheritance of ARDS. 
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