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/Abstract

Knee Osteoarthritis (KOA) is a common degenerative joint disease that affects no less than 19% of American adults aged
above 45 years. The incidence of Osteoarthritis (OA) is increasing and will continue to do so as the world’s population increases
and continues to age. Current treatment strategies for OA include few non-invasive interventions (medications, physical therapy,
activity modification and bracing) and invasive therapies (drilling, debridement, osteochondral transplantation, autologous per-
ichondral and periosteal grafts, autologous chondrocyte implantation and arthroplasty). Many of these strategies are focused on
pain reduction rather than disease modification or controlling progression. Cell based therapies are emerging as a promising ap-
proach to OA treatment and have been shown to reverse the symptoms and pathophysiology of OA. Researchers and clinicians
are focusing on the beneficial effects of autologous Bone Marrow Concentrate (aBMC) for the treatment of KOA. The probable
repair mechanisms and potential role of cellular and humoral components of aBMC is discussed in this review.
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SMPCS : Synovial Mesenchymal Progenitor Cell

Introduction

Knee Osteoarthritis (KOA) is a common degenerative joint
disease characterized by gradual deterioration of the articular
cartilage, diseased subchondral bone, formation of osteophytes and
cellular inflammation of adjacent tissues. KOA is a highly prevalent
disabling disease which affects at least 19% of American adults
aged above 45 years [1]. The incidence of Osteoarthritis (OA) is
increasing and will continue to do so as the world’s population
increases and continues to age. Wallace et al recently reports
that prevalence of KOA has doubled since the mid-20" century
[2]. Factors that may increase the risk of developing OA are age,
gender, joint trauma or overloading caused by physical labor or
sports, hereditary and obesity [3]. Current treatment strategies for
OA include few non-invasive interventions (medications, physical
therapy, activity modification and bracing) and invasive therapies
(drilling, debridement, osteochondral transplantation, autologous
perichondral and periosteal grafts, autologous chondrocyte
implantation and arthroplasty). Many of these strategies are
focused on pain reduction rather than the disease modification or
controlling progression [4].

Cell based therapies are emerging as a promising approach
to OA treatment [S]. These therapies have a huge potential
to contribute to novel therapeutic strategies for the repair of
chondral or osteochondral defects. Cell-based therapies have
been shown to reverse the symptoms and pathophysiology of
OA [6]. The mechanisms of action of bone marrow derived cell
therapy in tissue regeneration are related to the secretion of several
cytokines, chemokines, and Growth Factors (GFs), which can
improve angiogenesis, suppress inflammation, inhibit apoptosis,
and stimulate endogenous repair [7]. With recent advances in
regenerative medicine many clinical studies are underway to
explore the capacity of stem cells to regenerate articular cartilage,
suggesting a real-world potential to be translated to clinic. Cell
populations used in clinical trials for KOA includes Articular
Chondrocytes, Mesenchymal Stem Cells (MSCs) derived from
bone marrow or adipose tissue and Bone-marrow Concentrate.
Autologous cultured chondrocytes transplantation for cartilage
regeneration has been used successfully over a decade [8].
Major limitations for biological cartilage repair using articular
chondrocytes include lack of implanted graft mechanical stability
and various side effects leading to procedure failure [9-10].
Another problem for biological cartilage repair besides the delay
of treatment is the localization of the defect. These difficulties left
the field open to other therapies and the most promising of these
are MSCs to repair the damaged cartilage tissue. MSCs offer a
potential regenerative solution given their ability to differentiate
to all tissues within a joint and modulate the local inflammatory
response. Although these characteristics suggest they provide
ideal building blocks to restore damaged joints, a strong body of
evidence supports MSC-guided regeneration through paracrine
stimulation of native tissue.

Adipose Tissue-Derived Stem Cells (ADSCs) in the form of

Stromal Vascular Fraction (SVF) may offer an alternative option
for MSCs and have demonstrated an ability to regenerate cartilage
[5]. Jo, et al. conducted a study in which they administered
different doses of ADSCs- low, middle and high in 18 patients
suffering from KOA. The low- and middle-dose groups showed
significant improvement in joint function and pain reduction,
whereas the size of the cartilage defect increased in the low-dose
group and decreased in the middle- and high-dose groups [11].
The promising outcomes demonstrated that intra-articular ADSC
injection may serve as a potent and safe therapy for OA. However,
the major limitation of these ADSCs is regulatory restrictions.
The common practices of enzymatic and mechanical disruption
of adipose tissue for isolating SVF [12] are explicitly mentioned
in the Food and Drug Administration (FDA) document as “more
than minimal manipulation” and is category 351 product, that is a
“drug/biologic” and in need of complete FDA regulation [13].

BM derived MSCs provide an excellent therapeutic
alternative for the treatment of KOA [14]. Recently, Yubo, et al.
evaluated the therapeutic efficacy and safety of mesenchymal stem
cells (MSCs) for the treatment of patients with knee Osteoarthritis
(OA). Meta-analysis conducted by Yubo, et al. of relevant
published clinical studies demonstrated that MSC-based stem cell
therapy for patients with KOA was associated with significantly
decreased pain scores, increased knee functions scales and low
rates of adverse events [15]. However, there are limitations with
the use of MSCs. Somozoa, et al. reported that MSCs have an
intrinsic differentiation program reminiscent of endochondral bone
formation, which they follow after exposure to specific reagents
as a part of current differentiation protocols. Efforts have been
made to avoid the resulting hypertrophic fate of MSCs; however,
so far, none of these has recreated a fully functional articular
hyaline cartilage without chondrocytes exhibiting a hypertrophic
phenotype. Sequence of events and the morphology of the
resulting cartilage are more comparable to that of the early phases
of endochondral ossification as seen in the skeletal development or
fracture repair, where it is a prelude to programmed cell death and
mineralization [16]. Also, In-vitro culture and expansion of MSCs
is associated with significant costs and regulatory requirements,
which in the current financial restrictions in healthcare have made
this option unfeasible for clinical application. Thus, researchers
and clinicians are focusing on the beneficial effects of autologous
BMC for the treatment of KOA. BMC can be safely and easily
obtained from the patient while in compliance with the US Food
and Drug Administration policy guidelines including minimal
manipulation.

Bone Marrow Concentrate (BMC): Treatment
for KOA

Autologous BMC has emerged as a novel treatment of
KOA. The preparation and application of autologous BMC is a
cost-effective method in delivering progenitor cells & cytokines
to aid in the repair and regeneration of cartilage defects. BMC
contains a range of growth factors and cytokines to support cell
growth following injury [17-18]. BMC generated following
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density-gradient centrifugation has increased numbers of stem/
progenitor cells and growth factors. The concentrate possesses,
anti-inflammatory, angiogenic and potent immunomodulatory
properties that can potentially enhance cartilage repair [19]. Pre-
clinical studies conducted for treatment of cartilage pathology
have reported promising results with the use of BMC [20,21].
The studies generated enthusiasm and have led to early clinical
trials. Review conducted by Filardo and colleagues found 5
clinical trials and 2 pre-clinical studies focusing on the use of
BMC for the treatment cartilage regeneration [22]. The studies
show the potential of BMC as a promising treatment for cartilage
regeneration and can potentially be translated for future therapies.
Several clinical studies have reported the safety of BMC and its
potential effectiveness in treatment of early KOA and moderate
focal chondral defects [14,18,23-26]. Hendrich and colleagues
conducted a 101 patients study with an average follow-up time of
14 months. The group reported no adverse effect or morbidity from
the harvest site [27]. Recently, Shapiro et al published results of a
prospective, single-blind, placebo-controlled trial on 25 patients
with bilateral KOA, and reported that the use of BMC is safe. The
authors did not find any significant difference between BMC and
the placebo group, although both groups showed improvement in
pain at 1 week, 3 months, and 6 months [26]. Two other studies
reported by Centeno et al and Kim et al showed the beneficial effect
of BMC injection for KOA in terms of improved functional activity
scores and pain scores. Centeno et al combined the injection of
BMC with PRP and platelet lysate and compared for the treatment
of OA with and without adipose tissue. The data indicates that
there is no significant difference between the 2 groups. Addition
of an adipose graft to the BMC did not provide a detectible benefit
over BMC alone treated group [14].

Similarly, Kim, et al. reported BMC injection along with
adipose tissue improved functional activity scores and pain scores
in the patients with degenerative arthritis of knee [24]. The studies
lacked a control group and BMC injections were performed
concomitant to other treatments thus making the interpretation of
the results challenging. Sampson et al carried out intra-articular
administration of autologous, nonculture expanded BMC with
subsequent follow-up injection of Platelet Rich Plasma (PRP) at 8
weeks post BMC injection in 125 patients suffering from moderate
to severe osteoarthritis. Among 125 patients, no patient reported
a significant side effect from the treatment, and the median pain
reduction among the 87 patients with complete data at a median
follow-up of 148 days was 71.4%. Furthermore, median patient
satisfaction for the 84 patients that completed the post procedure
satisfaction survey was 9.0 out of 10 [25]. In general, there were
no significant adverse events in the above-mentioned studies
highlighting the safety of BMC injection for the treatment of
KOA. Another systematic review conducted by Chahla, et al.
concluded that intra articular BMC injections for KOA and focal
cartilage defects are safe and showed clinical benefit. The studies
included in this systematic review reported good results, but they
used different outcome measures and this heterogeneity does not
allow for direct comparison [18]. Although basic science and
animal models have shown that stem and progenitor cell therapies

may potentially perform as disease-modifying treatments for
KOA through proposed mechanisms of tissue regeneration or
immunomodulation, this effect still needs to be further proven. It is
still not yet clear how BMC can be best utilized for the treatment and
which of the components of BMC are predominantly responsible
for the desired effect. Furthermore, optimized delivery of BMC
may better address the pathophysiology of subchondral bone with
intraosseous infiltration [28].

Role of cellular and humoral components of
BMC

Initial experiments using BMC in treating cartilage pathology
have reported clear benefits [20,21]. BMC is a cost-effective
method in delivering MSCs to aid in the repair and regeneration
of cartilage defects. MSCs have been reported to enhance the
quality of cartilage repair by increasing aggrecan content and
tissue firmness [19]. Alongside MSCs, BMC contains a range of
growth factors and cytokines to support which are assigned to have
anabolic and anti-inflammatory effects thus supporting cell growth
following injury [18,29-30]. However, it is still not clear how BMC
can be best utilized for the treatment of different conditions and
which of the components of BMC are predominantly responsible
for supporting the growth and regeneration of chondrocytes.

Cellular composition of BMC

Previous studies have reported the clinical value of bone
marrow concentrates, showing a positive correlation between the
number of applied bone marrow progenitors and favorable clinical
outcomes in OA and other orthopedic indications [11]. Despite
the advantages of using bone marrow aspirates or concentrates,
the quality of these samples remains difficult to assess and is
poorly controlled. There is an overall lack of consensus on which
stem cell markers to characterize BMC. Recently, Jawhari, et al.
proposed an optimized method of counting CD45"°*CD271"¢ cells
and tested it as an indicator of bone marrow sample quality [31].
This assay for counting CD45"°*CD271"¢" cells may provide a
useful measurement of bone marrow quality. While the specificity
of this measurement of CD45"°*CD271"e" cells remained low in
the defined experimental conditions, CD45"°*CD271"¢ cell counts
were positively and modestly correlated with the prevalence of
Connective Tissue Progenitor (CTPs). Thus, assessing the CD271
fraction in BMC might help us to identify the responders and
non-responders of the cellular therapy and might help in planning
future therapies.

Probable detrimental effect of RBCs in
progenitor stem cell functionality

Previous experimental studies and clinical pilot trials
showed that a reduction of functional activity of the infused cells
was associated with reduced therapeutic effects [32,33]. However,
the impact of the composition of the cell product and the potential
effect of contaminating cells such as Red Blood Cells (RBCs) was
unclear. Assmus, et al. (2010) carried out experimental studies to
demonstrate that the addition of Red Blood Cells (RBCs) impairs
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BMC cell function in-vitro and in-vivo. The data published in
Journal of the American College of Cardiology (JACC) suggest that
the number of contaminating RBCs in the purified BMC population
might have influenced the functionality of the cells used for cell
therapy. Co-incubation experiments were carried out to study the
effect of RBCs on the functionality of the cells. The RBCs dose-
dependently reduced the viability of BMCs as measured by trypan
blue exclusion assay. Furthermore, the invasion capacity of BMCs
at baseline and after stimulation with Stromal Derived Factor-1
(SDF-1) was significantly reduced by RBC addition. In fact, the
highest dose of RBC contamination completely abolished the
migratory capacity of isolated BMCs toward SDF-1. Incubation
of BMCs with RBCs further reduced the Colony Forming Unit
(CFU) capacity, thus indicating that RBCs directly affect cell
viability and cell functionality [34].

Basedonpreviousstudiesitisknownthatstemcellcompetence,
migration and survival is dependent on the integrity and function
of mitochondria [35-37]. Therefore, Assmus, et al. tested the
mitochondrial function of BMCs by measuring the mitochondrial
membrane potential with JC-1 staining after addition of RBCs. They
found that contamination with RBCs dose-dependently reduced
the quantitative mitochondrial membrane potential of BMCs,
indicating that RBCs impair the mitochondrial function of BMCs.
Taken together, this data confirms that RBC contamination dose
dependently impairs the in vitro and in vivo functions of isolated
bone marrow-derived mononuclear cells. Bleeding disorder like
haemophilia leads to recurrent joint hemorrhages which leads to
inflammation, damage of articular cartilage, and eventually to
destruction of the whole joint. /n vitro studies have shown that
the combination of monocytes/macrophages and red blood cells,
as present in whole blood, leads to long-lasting disturbance of
cartilage matrix turnover [38]. Mechanism proposed for this
irreversible damage is the conversion of hydrogen peroxide and
catalytic iron, supplied by damaged red blood cells, into hydroxyl
radicals [39-40]. Hydrogen peroxide is produced by chondrocytes
under the influence of interleukin-1 (IL-1) formed by activated
monocytes/macrophages. Hydroxyl radicals cause chondrocyte
apoptosis resulting in permanent cartilage damage, [41] since
the chondrocyte is the only cell type of cartilage and responsible
for maintenance of the cartilage matrix. Moreover, there are also
direct harmful effects exerted by intra-articular blood on cartilage,
as demonstrated by in vitro studies. Indeed, it has been reported
that a short four-day exposure of human cartilage to whole blood
at concentrations up to 50% may induce long lasting inhibition of
cartilage matrix proteoglycan synthesis and a prolonged decrease
in proteoglycan content [42-45]. Thus, reduced hematocrit in the
BMC would help in better functionality of the stem cells used in
the cell therapy. However there have been technological challenges
and limitations to commercially separate out the RBC while not
depleting the native monocyte fraction.

Role of BMC Cytokines on the functionality of
progenitor stem cells

In the osteoarthritic knee there exists an imbalance of the
chondrocyte’s cellular catabolic and anabolic functions. This

inequality leads to degradation of the extracellular matrix of hyaline
cartilage and is mediated by cytokines such as interleukin-1 (IL-1),
chemokines like the C-C class of the beta chemokine family and
Tumor Necrosis Factor (TNF). The chronic inflammatory process
that ensues causes further cartilage damage, and eventually leads
to mechanical and biological dysfunction within the joint. Though
the complete role of inflammation in OA is unknown, elements
of inflammation have been directly implicated in the progression
of the disease and the degeneration of the cartilage surfaces of
the joint. Interleukin 1b (IL-1b), a pro-inflammatory cytokine has
been demonstrated to play a central role in the pathophysiology
of cartilage damage and degradation in arthritis. In OA patients,
increased IL-1b has been observed within the synovium, synovial
fluid, and cartilage itself. IL-1b has been directly implicated in the
inhibition of chondrogenic differentiation and inhibition of specific
extra cellular matrixproteins required for cartilage function [46]. In
addition to IL-1b, Monocyte Chemoattractant Protein-1 (MCP-1)
is also present in the inflamed joints. MCP-1 is a member of the
C-C class of the beta chemokine family and one of the key factors
involved in the initiation of inflammation. It triggers chemotaxis
and trans-endothelial migration of monocytes to inflammatory
lesions by interacting with the membrane C-C Motif Chemokine
Receptor 2 (CCR2) in monocytes [47]. Harris et al demonstrated
that MCP-1 inhibited the chondrogenesis of Synovial Mesenchymal
Progenitor Cell (sMPCs) at the gene, protein, and primitive tissue
levels. These anabolic SMPCs are present in the adjacent synovial
lining and synovial fluid and are capable of differentiating into
cartilage both in vitro and in vivo. They have also demonstrated
that MCP-1 increases the proliferative potential of these cells.
Exposure to physiological (OA knee joint synovial fluid) levels
of MCP-1 triggers changes in the transcriptome of sMPCs and
prolonged exposure to the chemokine induces the expression
of MCP-1 in sMPCs, resulting in a positive feedback loop from
which sMPCs cannot apparently escape. After prolonged exposure
to MCP-1, sMPCs begin to express MCP-1 which “locks” the joint
in a viscous cycle of ineffective repair. Thus, arising a need of
the adjunctive which breaks this viscous cycle by inhibiting the
secretion of MCP-1 [48]. Therefore, a potential biologic inhibiting
both IL-1b and MCP-1 is required for effective treatment of OA.

One of the known antagonists to IL-1b cytokine and MCP-1
is IL-1 receptor antagonist protein (IL-1ra). Brown et al reported
IL-1 receptor antagonist inhibits MCP-1 generation by human
mesangial cells [49]. While marrow concentrate after density
gradient centrifugation contains a relatively small population of
MSC (0.001%-0.01%) It is an important biological tool with a rich
source of growth factors, including Platelet-Derived Growth Factor
(PDGF), transforming growth factor-beta (TGF-B), and Bone
Morphogenetic Protein (BMP)-2 and BMP-7, which are reported to
have anabolic and anti-inflammatory effects [18]. Cassano, Fortier
and colleagues reported that BMC has a significantly greater
concentration of interleukin-1 receptor antagonist (IL-1RA) [50].
Although there does not seem to be a consensus on the minimum
level of IL-1ra necessary to achieve therapeutic benefit, it has been
generally reported in the literature that a ratio of IL-RA to IL1J
on the order of 10-1000 to 1 is sufficient to effect blockade of
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the IL-1 receptors or the IL-1 triggered effects, thereby alleviating
the degenerative effects of IL-1 [51]. Thus, injecting BMC might
inhibit IL-1 catabolism and MCP-1 secretion and therefore may be
responsible for the beneficial symptomatic pain relief.

Conclusion and Future Directions

KOA is a chronic disease characterized by the slow
degradation of cartilage which results in pain and disability in
patients impacting on the quality of a patient’s life. The development
of new therapeutic approaches involving cell-based therapies, may
become a viable alternative for the treatment of KOA. However,
this will require overcoming multiple challenges by basic
scientists such as cell source, harvesting techniques, effective cell
dose and composition and clinical studies with good sample size
and long term follow up are requisite. Use of autologous BMC
is growing exponentially as it is proven to be a safe and easy to
be performed. With regards to the cellular and cytokine content
of BMC it remains unclear which makeup with or without RBC
and which applications lead to the best outcome in KOA. Further
well designed clinical trials are needed to establish the long-term
effects of BMC in treatment of KOA.
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