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Abstract
Knee Osteoarthritis (KOA) is a common degenerative joint disease that affects no less than 19% of American adults aged 

above 45 years. The incidence of Osteoarthritis (OA) is increasing and will continue to do so as the world’s population increases 
and continues to age. Current treatment strategies for OA include few non-invasive interventions (medications, physical therapy, 
activity modification and bracing) and invasive therapies (drilling, debridement, osteochondral transplantation, autologous per-
ichondral and periosteal grafts, autologous chondrocyte implantation and arthroplasty). Many of these strategies are focused on 
pain reduction rather than disease modification or controlling progression. Cell based therapies are emerging as a promising ap-
proach to OA treatment and have been shown to reverse the symptoms and pathophysiology of OA. Researchers and clinicians 
are focusing on the beneficial effects of autologous Bone Marrow Concentrate (aBMC) for the treatment of KOA. The probable 
repair mechanisms and potential role of cellular and humoral components of aBMC is discussed in this review.
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Abbreviations
KOA	 :		  Knee Osteoarthritis

OA	 :		  Osteoarthritis

GF	 : 		  Growth Factor

MSC	 :		  Mesenchymal Stem Cell

ADSC	 : 		  Adipose Tissue-Derived Stem Cells

SVF	 : 		  Stromal Vascular Fraction

FDA	 : 		  Food and Drug Administration 

BM	 : 		  Bone Marrow

BMC	 : 		  Bone Marrow Concentrate

PRP	 : 		  Platelet Rich Plasma

CTP	 : 		  Connective Tissue Progenitors 

RBC	 : 		  Red Blood Cell

SDF	 : 		  Stromal Derived Factor

CFU	 : 		  Colony Forming Unit

IL	 : 		  Interleukin 

TNF	 : 		  Tumor Necrosis Factor

MCP-1	 : 		  Monocyte Chemo Attractant Protein-1 

CCR2 	 : 		  C-C Motif Chemokine Receptor 2

TGF-B	 : 		  Transforming Growth Factor

PDGF	 : 		  Platelet Derived Growth Factor

BMP	 : 		  Bone Morphogenic Protein
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SMPCS	 : 	            Synovial Mesenchymal Progenitor Cell

Introduction
Knee Osteoarthritis (KOA) is a common degenerative joint 

disease characterized by gradual deterioration of the articular 
cartilage, diseased subchondral bone, formation of osteophytes and 
cellular inflammation of adjacent tissues. KOA is a highly prevalent 
disabling disease which affects at least 19% of American adults 
aged above 45 years [1]. The incidence of Osteoarthritis (OA) is 
increasing and will continue to do so as the world’s population 
increases and continues to age. Wallace et al recently reports 
that prevalence of KOA has doubled since the mid-20th century 
[2]. Factors that may increase the risk of developing OA are age, 
gender, joint trauma or overloading caused by physical labor or 
sports, hereditary and obesity [3]. Current treatment strategies for 
OA include few non-invasive interventions (medications, physical 
therapy, activity modification and bracing) and invasive therapies 
(drilling, debridement, osteochondral transplantation, autologous 
perichondral and periosteal grafts, autologous chondrocyte 
implantation and arthroplasty). Many of these strategies are 
focused on pain reduction rather than the disease modification or 
controlling progression [4]. 

Cell based therapies are emerging as a promising approach 
to OA treatment [5]. These therapies have a huge potential 
to contribute to novel therapeutic strategies for the repair of 
chondral or osteochondral defects. Cell-based therapies have 
been shown to reverse the symptoms and pathophysiology of 
OA [6]. The mechanisms of action of bone marrow derived cell 
therapy in tissue regeneration are related to the secretion of several 
cytokines, chemokines, and Growth Factors (GFs), which can 
improve angiogenesis, suppress inflammation, inhibit apoptosis, 
and stimulate endogenous repair [7]. With recent advances in 
regenerative medicine many clinical studies are underway to 
explore the capacity of stem cells to regenerate articular cartilage, 
suggesting a real-world potential to be translated to clinic. Cell 
populations used in clinical trials for KOA includes Articular 
Chondrocytes, Mesenchymal Stem Cells (MSCs) derived from 
bone marrow or adipose tissue and Bone-marrow Concentrate. 
Autologous cultured chondrocytes transplantation for cartilage 
regeneration has been used successfully over a decade [8]. 
Major limitations for biological cartilage repair using articular 
chondrocytes include lack of implanted graft mechanical stability 
and various side effects leading to procedure failure [9-10]. 
Another problem for biological cartilage repair besides the delay 
of treatment is the localization of the defect. These difficulties left 
the field open to other therapies and the most promising of these 
are MSCs to repair the damaged cartilage tissue. MSCs offer a 
potential regenerative solution given their ability to differentiate 
to all tissues within a joint and modulate the local inflammatory 
response. Although these characteristics suggest they provide 
ideal building blocks to restore damaged joints, a strong body of 
evidence supports MSC-guided regeneration through paracrine 
stimulation of native tissue. 

Adipose Tissue-Derived Stem Cells (ADSCs) in the form of 

Stromal Vascular Fraction (SVF) may offer an alternative option 
for MSCs and have demonstrated an ability to regenerate cartilage 
[5].  Jo, et al. conducted a study in which they administered 
different doses of ADSCs- low, middle and high in 18 patients 
suffering from  KOA. The low- and middle-dose groups showed 
significant improvement in joint function and pain reduction, 
whereas the size of the cartilage defect increased in the low-dose 
group and decreased in the middle- and high-dose groups [11]. 
The promising outcomes demonstrated that intra-articular ADSC 
injection may serve as a potent and safe therapy for OA. However, 
the major limitation of these ADSCs is regulatory restrictions. 
The common practices of enzymatic and mechanical disruption 
of adipose tissue for isolating SVF [12] are explicitly mentioned 
in the Food and Drug Administration (FDA) document as “more 
than minimal manipulation” and is category 351 product, that is a 
“drug/biologic” and in need of complete FDA regulation [13]. 

BM derived MSCs provide an excellent therapeutic 
alternative for the treatment of KOA [14]. Recently, Yubo, et al. 
evaluated the therapeutic efficacy and safety of mesenchymal stem 
cells (MSCs) for the treatment of patients with knee Osteoarthritis 
(OA). Meta-analysis conducted by Yubo, et al. of relevant 
published clinical studies demonstrated that MSC-based stem cell 
therapy for patients with KOA was associated with significantly 
decreased pain scores, increased knee functions scales and low 
rates of adverse events [15]. However, there are limitations with 
the use of MSCs. Somozoa, et al. reported that MSCs have an 
intrinsic differentiation program reminiscent of endochondral bone 
formation, which they follow after exposure to specific reagents 
as a part of current differentiation protocols. Efforts have been 
made to avoid the resulting hypertrophic fate of MSCs; however, 
so far, none of these has recreated a fully functional articular 
hyaline cartilage without chondrocytes exhibiting a hypertrophic 
phenotype. Sequence of events and the morphology of the 
resulting cartilage are more comparable to that of the early phases 
of endochondral ossification as seen in the skeletal development or 
fracture repair, where it is a prelude to programmed cell death and 
mineralization [16]. Also, In-vitro culture and expansion of MSCs 
is associated with significant costs and regulatory requirements, 
which in the current financial restrictions in healthcare have made 
this option unfeasible for clinical application. Thus, researchers 
and clinicians are focusing on the beneficial effects of autologous 
BMC for the treatment of KOA. BMC can be safely and easily 
obtained from the patient while in compliance with the US Food 
and Drug Administration policy guidelines including minimal 
manipulation. 

Bone Marrow Concentrate (BMC): Treatment 
for KOA

Autologous BMC has emerged as a novel treatment of 
KOA. The preparation and application of autologous BMC is a 
cost-effective method in delivering progenitor cells & cytokines 
to aid in the repair and regeneration of cartilage defects. BMC 
contains a range of growth factors and cytokines to support cell 
growth following injury [17-18].  BMC generated following 

https://www.sciencedirect.com/science/article/pii/S2095809917301443#bib141
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density-gradient centrifugation has increased numbers of stem/
progenitor cells and growth factors. The concentrate possesses, 
anti-inflammatory, angiogenic and potent immunomodulatory 
properties that can potentially enhance cartilage repair [19]. Pre-
clinical studies conducted for treatment of cartilage pathology 
have reported promising results with the use of BMC [20,21]. 
The studies generated enthusiasm and have led to early clinical 
trials. Review conducted by Filardo and colleagues found 5 
clinical trials and 2 pre-clinical studies focusing on the use of 
BMC for the treatment cartilage regeneration [22]. The studies 
show the potential of BMC as a promising treatment for cartilage 
regeneration and can potentially be translated for future therapies. 
Several clinical studies have reported the safety of BMC and its 
potential effectiveness in treatment of early KOA and moderate 
focal chondral defects [14,18,23-26]. Hendrich and colleagues 
conducted a 101 patients study with an average follow-up time of 
14 months. The group reported no adverse effect or morbidity from 
the harvest site [27]. Recently, Shapiro et al published results of a 
prospective, single-blind, placebo-controlled trial on 25 patients 
with bilateral KOA, and reported that the use of BMC is safe. The 
authors did not find any significant difference between BMC and 
the placebo group, although both groups showed improvement in 
pain at 1 week, 3 months, and 6 months [26]. Two other studies 
reported by Centeno et al and Kim et al showed the beneficial effect 
of BMC injection for KOA in terms of improved functional activity 
scores and pain  scores. Centeno et al combined the injection of 
BMC with PRP and platelet lysate and compared for the treatment 
of OA with and without adipose tissue. The data indicates that 
there is no significant difference between the 2 groups. Addition 
of an adipose graft to the BMC did not provide a detectible benefit 
over BMC alone treated group [14]. 

Similarly, Kim, et al. reported BMC injection along with 
adipose tissue improved functional activity scores and pain scores 
in the patients with degenerative arthritis of knee [24]. The studies 
lacked a control group and BMC injections were performed 
concomitant to other treatments thus making the interpretation of 
the results challenging. Sampson et al carried out intra-articular 
administration of autologous, nonculture expanded BMC with 
subsequent follow-up injection of Platelet Rich Plasma (PRP) at 8 
weeks post BMC injection in 125 patients suffering from moderate 
to severe osteoarthritis. Among 125 patients, no patient reported 
a significant side effect from the treatment, and the median pain 
reduction among the 87 patients with complete data at a median 
follow-up of 148 days was 71.4%. Furthermore, median patient 
satisfaction for the 84 patients that completed the post procedure 
satisfaction survey was 9.0 out of 10 [25]. In general, there were 
no significant adverse events in the above-mentioned studies 
highlighting the safety of BMC injection for the treatment of  
KOA. Another systematic review conducted by Chahla, et al. 
concluded that intra articular BMC injections for  KOA and focal 
cartilage defects are safe and showed clinical benefit. The studies 
included in this systematic review reported good results, but they 
used different outcome measures and this heterogeneity does not 
allow for direct comparison [18]. Although basic science and 
animal models have shown that stem and progenitor cell therapies 

may potentially perform as disease-modifying treatments for 
KOA through proposed mechanisms of tissue regeneration or 
immunomodulation, this effect still needs to be further proven. It is 
still not yet clear how BMC can be best utilized for the treatment and 
which of the components of BMC are predominantly responsible 
for the desired effect. Furthermore, optimized delivery of BMC 
may better address the pathophysiology of subchondral bone with 
intraosseous infiltration [28].

Role of cellular and humoral components of 
BMC

Initial experiments using BMC in treating cartilage pathology 
have reported clear benefits [20,21]. BMC is a cost-effective 
method in delivering MSCs to aid in the repair and regeneration 
of cartilage defects. MSCs have been reported to enhance the 
quality of cartilage repair by increasing aggrecan content and 
tissue firmness [19]. Alongside MSCs, BMC contains a range of 
growth factors and cytokines to support which are assigned to have 
anabolic and anti-inflammatory effects thus supporting cell growth 
following injury [18,29-30]. However, it is still not clear how BMC 
can be best utilized for the treatment of different conditions and 
which of the components of BMC are predominantly responsible 
for supporting the growth and regeneration of chondrocytes. 

Cellular composition of BMC
Previous studies have reported the clinical value of bone 

marrow concentrates, showing a positive correlation between the 
number of applied bone marrow progenitors and favorable clinical 
outcomes in OA and other orthopedic indications [11]. Despite 
the advantages of using bone marrow aspirates or concentrates, 
the quality of these samples remains difficult to assess and is 
poorly controlled. There is an overall lack of consensus on which 
stem cell markers to characterize BMC. Recently, Jawhari, et al. 
proposed an optimized method of counting CD45lowCD271high cells 
and tested it as an indicator of bone marrow sample quality [31]. 
This assay for counting CD45lowCD271high cells may provide a 
useful measurement of bone marrow quality. While the specificity 
of this measurement of CD45lowCD271high cells remained low in 
the defined experimental conditions, CD45lowCD271high cell counts 
were positively and modestly correlated with the prevalence of 
Connective Tissue Progenitor (CTPs). Thus, assessing the CD271 
fraction in BMC might help us to identify the responders and 
non-responders of the cellular therapy and might help in planning 
future therapies.

Probable detrimental effect of RBCs in 
progenitor stem cell functionality

Previous experimental studies and clinical pilot trials 
showed that a reduction of functional activity of the infused cells 
was associated with reduced therapeutic effects [32,33]. However, 
the impact of the composition of the cell product and the potential 
effect of contaminating cells such as Red Blood Cells (RBCs) was 
unclear. Assmus, et al. (2010) carried out experimental studies to 
demonstrate that the addition of Red Blood Cells (RBCs) impairs 
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BMC cell function in-vitro and in-vivo. The data published in 
Journal of the American College of Cardiology (JACC) suggest that 
the number of contaminating RBCs in the purified BMC population 
might have influenced the functionality of the cells used for cell 
therapy. Co-incubation experiments were carried out to study the 
effect of RBCs on the functionality of the cells. The RBCs dose-
dependently reduced the viability of BMCs as measured by trypan 
blue exclusion assay. Furthermore, the invasion capacity of BMCs 
at baseline and after stimulation with Stromal Derived Factor-1 
(SDF-1) was significantly reduced by RBC addition. In fact, the 
highest dose of RBC contamination completely abolished the 
migratory capacity of isolated BMCs toward SDF-1. Incubation 
of BMCs with RBCs further reduced the Colony Forming Unit 
(CFU) capacity, thus indicating that RBCs directly affect cell 
viability and cell functionality [34].

Based on previous studies it is known that stem cell competence, 
migration and survival is dependent on the integrity and function 
of mitochondria [35-37]. Therefore, Assmus, et al. tested the 
mitochondrial function of BMCs by measuring the mitochondrial 
membrane potential with JC-1 staining after addition of RBCs. They 
found that contamination with RBCs dose-dependently reduced 
the quantitative mitochondrial membrane potential of BMCs, 
indicating that RBCs impair the mitochondrial function of BMCs. 
Taken together, this data confirms that RBC contamination dose 
dependently impairs the in vitro and in vivo functions of isolated 
bone marrow-derived mononuclear cells. Bleeding disorder like 
haemophilia leads to recurrent joint hemorrhages which leads to 
inflammation, damage of articular cartilage, and eventually to 
destruction of the whole joint. In vitro  studies have shown that 
the combination of monocytes/macrophages and red blood cells, 
as present in whole blood, leads to long-lasting disturbance of 
cartilage matrix turnover [38]. Mechanism proposed for this 
irreversible damage is the conversion of hydrogen peroxide and 
catalytic iron, supplied by damaged red blood cells, into hydroxyl 
radicals [39-40]. Hydrogen peroxide is produced by chondrocytes 
under the influence of interleukin-1 (IL-1) formed by activated 
monocytes/macrophages. Hydroxyl radicals cause chondrocyte 
apoptosis resulting in permanent cartilage damage, [41]  since 
the chondrocyte is the only cell type of cartilage and responsible 
for maintenance of the cartilage matrix. Moreover, there are also 
direct harmful effects exerted by intra-articular blood on cartilage, 
as demonstrated by in vitro studies. Indeed, it has been reported 
that a short four-day exposure of human cartilage to whole blood 
at concentrations up to 50% may induce long lasting inhibition of 
cartilage matrix proteoglycan synthesis and a prolonged decrease 
in proteoglycan content [42-45]. Thus, reduced hematocrit in the 
BMC would help in better functionality of the stem cells used in 
the cell therapy. However there have been technological challenges 
and limitations to commercially separate out the RBC while not 
depleting the native monocyte fraction.

Role of BMC Cytokines on the functionality of 
progenitor stem cells

In the osteoarthritic knee there exists an imbalance of the 
chondrocyte’s cellular catabolic and anabolic functions. This 

inequality leads to degradation of the extracellular matrix of hyaline 
cartilage and is mediated by cytokines such as interleukin-1 (IL-1), 
chemokines like the C-C class of the beta chemokine family and 
Tumor Necrosis Factor (TNF). The chronic inflammatory process 
that ensues causes further cartilage damage, and eventually leads 
to mechanical and biological dysfunction within the joint. Though 
the complete role of inflammation in OA is unknown, elements 
of inflammation have been directly implicated in the progression 
of the disease and the degeneration of the cartilage surfaces of 
the joint. Interleukin 1b (IL-1b), a pro-inflammatory cytokine has 
been demonstrated to play a central role in the pathophysiology 
of cartilage damage and degradation in arthritis. In OA patients, 
increased IL-1b has been observed within the synovium, synovial 
fluid, and cartilage itself. IL-1b has been directly implicated in the 
inhibition of chondrogenic differentiation and inhibition of specific 
extra cellular matrixproteins required for cartilage function [46]. In 
addition to IL-1b, Monocyte Chemoattractant Protein-1 (MCP-1) 
is also present in the inflamed joints. MCP-1 is a member of the 
C-C class of the beta chemokine family and one of the key factors 
involved in the initiation of inflammation. It triggers chemotaxis 
and trans-endothelial migration of monocytes to inflammatory 
lesions by interacting with the membrane C-C Motif Chemokine 
Receptor 2 (CCR2) in monocytes [47]. Harris et al demonstrated 
that MCP-1 inhibited the chondrogenesis of Synovial Mesenchymal 
Progenitor Cell (sMPCs) at the gene, protein, and primitive tissue 
levels. These anabolic sMPCs are present in the adjacent synovial 
lining and synovial fluid and are capable of differentiating into 
cartilage both in vitro and in vivo. They have also demonstrated 
that MCP-1 increases the proliferative potential of these cells. 
Exposure to physiological (OA knee joint synovial fluid) levels 
of MCP-1 triggers changes in the transcriptome of sMPCs and 
prolonged exposure to the chemokine induces the expression 
of MCP-1 in sMPCs, resulting in a positive feedback loop from 
which sMPCs cannot apparently escape. After prolonged exposure 
to MCP-1, sMPCs begin to express MCP-1 which “locks” the joint 
in a viscous cycle of ineffective repair. Thus, arising a need of 
the adjunctive which breaks this viscous cycle by inhibiting the 
secretion of MCP-1 [48]. Therefore, a potential biologic inhibiting 
both IL-1b and MCP-1 is required for effective treatment of OA.

One of the known antagonists to IL-1b cytokine and MCP-1 
is IL-1 receptor antagonist protein (IL-1ra). Brown et al reported 
IL-1 receptor antagonist inhibits MCP-1 generation by human 
mesangial cells [49]. While marrow concentrate after density 
gradient centrifugation contains a relatively small population of 
MSC (0.001%-0.01%) It is an important biological tool with a rich 
source of growth factors, including Platelet-Derived Growth Factor 
(PDGF), transforming growth factor-beta (TGF-β), and Bone 
Morphogenetic Protein (BMP)-2 and BMP-7, which are reported to 
have anabolic and anti-inflammatory effects [18]. Cassano, Fortier 
and colleagues reported that BMC has a significantly greater 
concentration of interleukin-1 receptor antagonist (IL-1RA) [50]. 
Although there does not seem to be a consensus on the minimum 
level of IL-1ra necessary to achieve therapeutic benefit, it has been 
generally reported in the literature that a ratio of IL-RA to IL1β 
on the order of 10-1000 to 1 is sufficient to effect blockade of 
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the IL-1 receptors or the IL-1 triggered effects, thereby alleviating 
the degenerative effects of IL-1 [51]. Thus, injecting BMC might 
inhibit IL-1 catabolism and MCP-1 secretion and therefore may be 
responsible for the beneficial symptomatic pain relief.

Conclusion and Future Directions 
KOA is a chronic disease characterized by the slow 

degradation of cartilage which results in pain and disability in 
patients impacting on the quality of a patient’s life. The development 
of new therapeutic approaches involving cell-based therapies, may 
become a viable alternative for the treatment of KOA. However, 
this will require overcoming multiple challenges by basic 
scientists such as cell source, harvesting techniques, effective cell 
dose and composition and clinical studies with good sample size 
and long term follow up are requisite. Use of autologous BMC 
is growing exponentially as it is proven to be a safe and easy to 
be performed. With regards to the cellular and cytokine content 
of BMC it remains unclear which makeup with or without RBC 
and which applications lead to the best outcome in KOA. Further 
well designed clinical trials are needed to establish the long-term 
effects of BMC in treatment of  KOA.
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