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/Abstract

Macacine herpesvirus-1 (B virus) belongs to the Herpes group of viruses and occurs naturally in Macaques. B virus
infection is very mild in monkeys; however, it is fatal in 80% of untreated humans. Fatality is related to the upper spinal cord and
brainstem. The Initial stage of infection is characterized by flu like symptoms and the final stage of infection is characterized by
an ascending transverse myelitis. There are very few infected human cases reported so far and all of them were detected positive
for B virus by serological testing and not by their symptoms. If the symptoms progress to late stage it results in fatality during
acute infection, however, in latent infection timely treatment can prevent the progression of disease. As such, it is important to
regularly monitor the positive patients and determine the levels of B virus specific IgG in their serum. Here, we demonstrate that
B virus specific IgG3 subclass serves as a biomarker for reactivation in a patient with long-term B virus infection.
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Introduction

In the pharmaceutical industry, safety biomarkers are applied
pre-clinically, for early detection of toxicity, selection of the safest
drug candidate, sensitive safety monitoring in regulatory toxicity
studies, and selection of dosing regimens. Modern high-throughput
technologies for transcripts, proteins, and endogenous metabolites
offer a major opportunity to systematically identify sensitive and
specific safety biomarkers which could serve as an index of damage
specific to particular tissues and organs. Biomarkers can be critical
to preclinical drug research and development phase, where a greater
understanding of the molecular basis of toxicity and its influence
on disease and disease progression can play a major role in drug
development outcomes, including cost and overall success of new
drugs. In this early phase of research, biomarkers support the
mechanistic characterization of toxicity, show an early indication
of toxicity, and help define the maximal tolerated dose. When
relevant, safety biomarkers are studied in each preclinical species
used in the development of a drug, allowing for refinement of drug
dosing, administration, and formulation through the interspecies
correlation of pharmacokinetic and Pharmacodynamics data.
Safety biomarkers can also play an important role in deciding if
candidate drugs are transferred from the preclinical to the clinical

phase in the case where traditional clinical markers would not
detect early-onset organ toxicity. If a pharmaceutical company can
clearly show in preclinical studies that the novel biomarkers can
be used to detect early toxicity, monitor onset and reversibility, and
manage any potential adverse effect of a new drug with significant
therapeutic potential, a clinical implementation strategy with these
biomarkers can enable a clinical development program on a case-
by-case basis. Safety biomarkers can play an important role in the
progression of certain highly promising drugs from pre-clinical
into human studies-drugs that, in the past, would otherwise have
been abandoned because of the lack of performance of traditional
markers in detecting early-onset organ injury.

Translational safety biomarkers that are minimally invasive
and are specific and sensitive markers of early clinical injury are
urgently needed to assess whether toxicities observed in preclinical
toxicology studies are relevant to humans at therapeutic doses.
Exploratory biomarkers are used with the goal of arriving at a
suitable panel that can subsequently be tested and validated, for
use as an endpoint in future clinical trials. Mechanistic biomarkers,
a subtype of actionable biomarker, are embedded in disease
pathogenesis and, therefore, represents a superior biomarker. In
recognition of the importance of mechanistic biomarkers in drug
development, increasing effort is put into integration of molecular
diagnostics with therapeutics technologies. In this article, we
discuss various types of these biomarkers.
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Qualified safety biomarkers

An important safety biomarker success story is the recent recognition of kidney safety biomarkers for pre-clinical and limited
translational contexts by FDA (Food and Drug Administration, USA) and EMA (European Medicines Agency). This knowledge acquired
for kidney biomarkers is being transferred to other organ toxicities, namely liver, heart, and vascular system [1]. Some of the approved

safety biomarkers are enlisted in (Table 1). Some biomarkers are under qualification process and are listed in (Table 2).

Organ Biomarker Path.ology Qualification level Reference
monitored
For safety assessment studies in rats and dogs for following context of
use:
° When there is previous indication of cardiac structural
damage with a particular drug, cardiac troponin testing can help
estimate a lowest toxic dose or a highest non-toxic dose to help choose
doses for human testing
Troponins: cardiac . . When there is known cardiac structural damage with a
. Necrosis of . . . . [2]
Heart troponin T (¢TnT), particular pharmacologic class of a drug and histopathologic analyses
heart muscle . . . .
and I (cTnl) do not reveal structural damage, circulating cardiac troponins may be
used to support or refute the inference of low cardio toxic potential
° When unexpected cardiac structural toxicity is found in
a nonclinical study, the retroactive examination of serum or plasma
from that study for cardiac troponins can be used to help determine
a No Observed Adverse Effect Level (NOAEL) or Lowest Observed
Adverse Effect Level (LOAEL).
Kidney injury Acute tubular | e Can be included as biomarkers of drug induced acute kidney
molecule-1 . . . . . [2-5]
(Kim-1) alteration tubular alterations in GLP rat studies to support clinical trials
B2-microglobulin Acute . Can be included as biomarkers of acute drug induced
(BZI%/I) glomerular glomerular alteration/damage and/or impairment of kidney tubular [2-4]
alteration reabsorption in GLP rat studies used to support clinical trials
Cystatin-C (CysC) Acute ° Can be included as biomarkers of acute drug induced
Kidney Y Y glomerular glomerular alteration/damage and/or impairment of kidney tubular [2-4]
alteration reabsorption in GLP rat studies used to support clinical trials
. Acute tubular | e Can be included as biomarkers of drug induced acute kidney
Clusterin (CLU) alteration tubular alterations in GLP rat studies to support clinical trials [2-4]
Trefoil Factor-3 Acute tubular | e Can be included as biomarkers of drug induced acute kidney [2-4]
(TFF3) alteration tubular alterations in GLP rat studies to support clinical trials
Renal Papillary Acute tubular | e Can be included as biomarkers of drug induced acute kidney [2]
Antigen (RPA-1) alteration tubular alterations, particularly in the collecting duct, in male rats
Table 1: Qualified Pre-clinical safety biomarkers.
Biomarker Reference
Genomic Biomarker Approach for Positive Findings in the In vitro Chromosome Damage Assays in Mammalian Cells [6,7]
Drug-Induced Non-Clinical Kidney Injury Biomarkers (NGAL, OPN) [6,8]
Serum Glutamate Dehydrogenase (GLDH) [6,9]
Drug-Induced Skeletal Muscle Injury Biomarkers (Myl3, sTnl, FABP3, CK-M) [6,10]

Table 2: Biomarkers under qualification process.
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Emerging Biomarkers: the microRNAs

In recent years, microRNAs (miRNAs) have been evaluated
as potential candidate biomarkers of tissue injury. There are 788
known miRNAs in rats, 1899 in mice and 2585 in humans [11].
MiRNAs are endogenous, small (21-22 nucleotides), single-
stranded, noncoding RNAs that regulate gene expression at the
post-transcriptional level by binding to the 3'Untranslated Regions
(UTRs) of their target mRNAs leading either to degradation or
translational repression [12]. Studies have shown that miRNAs
are involved in multiple biological processes such as proliferation,
differentiation, development and cell death. The complementarity
between miRNA and mRNA does not have to be perfect for
translational inhibition, therefore one miRNA regulates several
hundred mRNAs and likewise, one mRNA is regulated by several
miRNAs [13]. In fact, it is estimated that over 50% of all protein-
coding genes are regulated by miRNAs in mammals [ 14] revealing
their overall involvement in diverse physiological as well as
pathological processes [15]. Many miRNAs are found to be highly
enriched in particular organs or at a particular stage of development
or disease progression in human body [16,17] (Figure 1, Table 3)

Organ Biomarker Specific purpose Reference
Kidney miR-192 Kidney cortex [18]
Liver miR-122 Early liver injury [19]
Heart miR-21-5p Cardiac inflammation [20]
miR-208a Cardiac injury [21]
Srlll(slitlzl miR-133a/b Skeletal muscle injury [22]

Table 3: Micro RNAs.

Neurotoxicity
miR-9-3p
miR-384-5p
miR-922
miR-181c-5p
miR-633

Cardiotoxicity iR-150-5
miR-150-5p

miR-1-3p
miR-133a-3p
miR-208a/b-3p
miR-499a-5p
miR-34a-3p

Kidney Toxicity
miR-21-5p
miR-155-5p
miR-18a-5p
miR-574-3p
miR-30a-c
miR-194
miR-197
miR-200
miR-203
miR-320
Let-7d

Liver Toxicity
miR-122-5p

miR-192-5p
miR-103a-3p

Figure 1: MicroRNAs altered by toxicants in target organs. (Reprinted
from [23]: Schraml E. at al. 2017).

Outside the cell, miRNAs were discovered for the first time
in serum/plasma from cancer patients [24] and afterward in other
body fluids like urine, breast milk, saliva and cerebral fluid [25].
Extracellular miRNAs are very stable and resistant to degradation
even with long-time storage atroom temperature, exogenous RNAse
treatment, pH variability and multiple freeze-thaw cycles [26,27].
Their stability is probably due to an association with RNA-binding
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proteins or being packed into vesicles [28-30]. MicroRNAs show
a highly evolutionary conservation; they are stable in various body
fluids, and can therefore easily be measured in clinical samples
[31]. MiRNAs can be readily detected in small sample volumes
using Quantitative Real-Time PCR (qRT-PCR) techniques and
are known to circulate in a stable, exosomal form [32]. Although
the exact biological functions of many miRNAs are not fully
understood, the tissue- or cell-specific distribution of certain
miRNAs may make them promising candidates as biomarkers
of target organ toxicity. Importantly, both the sequences and
tissue expression patterns are highly conserved between species,
suggesting they may be translational biomarkers that can be used
in both experimental animals and humans. miRNAs are implicated
in a range of diseases, including cancer, autoimmune diseases,
neurobiological disease and cardiovascular pathologies [33].
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