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Abstract

Characterized by developmentally inappropriate levels of inattention, hyperactivity and impulsivity, Attention-Deficit Hyperactivity
Disorder (ADHD) is the most prevalent neurodevelopmental disorder, posing a significant public health concern. Currently,
methylphenidate (MPH) is the primary pharmacological treatment of choice but associated with notable side effects prompting
the search for alternative therapies. Pycnogenol®, an extract rich in polyphenols derived from maritime pine, renowned for its
antioxidant, immunomodulatory, and anti-inflammatory properties, emerges as a promising alternative. Limited studies in ADHD
consistently reveal that Pycnogenol® treatment for 4 to 10 weeks improves attention span while reducing impulsive and hyperactive
behaviors. Its potential to rebalance neurotransmitter levels and positively influence gut microbiota, supposed to be altered in ADHD,
coupled with minimal side effects, suggests Pycnogenol® as a viable natural alternative to MPH. This study aims to review existing
scientific literature on Pycnogenol® administration in ADHD, addressing etiology, treatment, hypothesized of mechanisms of action
and the initial findings on its effects on ADHD symptomatology and cognitive function. While the potential of Pycnogenol® as a
therapeutic alternative is encouraging, further investigations are essential to fully elucidate its mechanisms and efficacy. These findings
underscore the importance of exploring innovative treatments for ADHD and highlight the challenges in objective assessment and
treatment development.
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Attention deficit hyperactivity disorder
Prevalence and symptomatology

Attention Deficit Hyperactivity Disorder (ADHD) is the most
common neurodevelopmental disorder in child psychiatry [1]
with a worldwide prevalence in children and adolescent around
8% [2,3] and an estimated male-to-female ratio of 2-4:1 [4-6].
ADHD is characterized by developmentally inappropriate levels
of inattention, hyperactivity and impulsivity [4] which affect daily
functioning, social interaction, academic success but also physical
and mental health [2,7]. Associated with comorbid disorders,
ADHD is actually an undeniable public health priority [8,9]. Its
symptoms persist into adulthood in 50% cases and are associated
with social and occupational impairment [10,11]. ADHD is also
associated with a range of executive and attentional deficits [12-
16]. Studies converge to show that the most frequently reported
cognitive deficits concern vigilance, working memory, inhibition,
delay aversion, selective attention and divided attention [13,16],
as well as reaction time variability [17]. These deficits are central
to the various explanatory theoretical models of ADHD developed
over the past 25 years and converge towards a predominant
position of the involvement of executive and attentional functions
in the symptomatology of this disorder, associated with structural
and functional brain variations [18-26].

Etiology

The etiopathogenesis of ADHD is considered multifactorial, with
complex determinism and resulting from an interaction of genetic
and environmental factors [27,28]. To date, however, its etiology
has not been fully elucidated, since neither genetic nor precise
environmental factors have been identified or replicated. This
disappointment suggests that the factors are interchangeable and
no single factor can be identified as an isolated and direct trigger of
ADHD. This lack of evidence, or rather heterogeneity, is consistent
with the significant phenotypic variability encountered in ADHD,
as well as, most likely, the important role played by environmental
factors [29-31]. Also, this lack of understanding of the underlying
molecular etiology of ADHD hinders diagnosis and treatment of
this disorder [32].

Significant evidence suggests a strong genetic component in ADHD
[33-35], with heritability estimated between 60% and 90% based
on twin studies [36-37]. Large-scale genomic association research
(GWAS) has identified genes linked to ADHD, potentially affecting
processes like neuronal plasticity or neurotransmitter function,
notably dopamine, noradrenaline, and serotonin [38,36,39,40].
However, no predominant genes have been consistently identified
due to insufficient replication, indicating probably minor effects
and complex interactions between genes and environment, though
their precise mechanisms remain unclear [41]. Environmental

factors, including prenatal, perinatal, and postnatal challenges,
as well as exposure to pollutants and psychological stressors, are
also supposed to play a role [42-44,31]. While their contribution
is estimated at 20% to 30% [45], their effect sizes are probably
modest, often working alongside genetic factors [41]. The emerging
idea from the body of etiological studies conducted to date tends
towards the idea that there are genetically susceptible individuals
who will be at greater risk of developing ADHD if exposed to
certain environmental risk factors [41,39,46,47]. Studies propose
that prenatal exposure to such factors could trigger inflammation,
impacting neurodevelopment and potentially contributing to
ADHD pathophysiology [41-49]. A neuroinflammatory state
would negatively influence brain development by acting
through glial activation, increased oxidative stress, aberrant
neuronal development, reduced neurotropic support and altered
neurotransmitter functions, such as dopamine, noradrenaline
and serotonin [50,41,51]. Therefore, this neuroinflammatory
hypothesis, relatively new and promising, suggests that a
neuroinflammatory state, caused by early environmental factors,
would be common to neurodevelopmental disorders [52,53], and
could have an impact on the pathophysiology of ADHD [41,54].

Moreover, susceptibility genes linked to neuroinflammation have
been associated with neurodevelopmental risks in ADHD [55,56].
Genetic polymorphisms in genes related to gene regulation,
cell adhesion, and inflammation, such as pro-inflammatory
cytokines, antioxidant enzymes, and microglia, have been
highlighted [57,58,41,59,60,56]. For instance, a GWAS study
found associations between ADHD and the gene encoding IL-1RA
[61]. These findings suggest a pro-inflammatory state in ADHD,
which could be a cause, effect, or related phenomenon of the
condition [59]. Inflammation may mediate ADHD risk factors,
which are intricately linked to stress, anxiety, and immune status
[41,59]. ADHD is considering as a high inflammation and immune
associated disease [62], indeed ADHD patients have higher rates
of immune and inflammatory disorders like eczema, asthma,
psoriasis, allergic rhinitis and type 1 diabetes [63-65].

This hypothesis of a neuroinflammatory state aligns with a
long-standing pathophysiological theory, which suggests that
dysfunction in the dopaminergic and noradrenergic systems
within certain brain regions are involved to the dysregulation of
impulsivity, behavioral control, arousal, and attention in ADHD
[66,41,67,68,54]. This is the pathway through which the most
widely used ADHD treatments act: they significantly reduce
symptoms by modifying the uptake or release of catecholamine’s
by neurons (agonist of dopaminergic synapses), thus improving
neurotransmitter activity [69-70]. At the cerebral level, structural
and functional differences have been highlighted, suggesting the
existence of a global maturation delay in children with ADHD,
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as well as cortical and subcortical activation variations, mainly in
prefrontal regions, involved in cognitive control, motor planning
and attentional processes [71-76,22,24].

But also, recent studies have suggested an association with
immune and oxidant-antioxidant imbalances in ADHD [77,67,78]
by demonstrating decreased antioxidant enzyme activity and
increased levels of oxidative damage [79,80,70,81] as well as an
increase in cellular markers of immunity [37,82]. Oxidative stress-
related susceptibility genes have been studied and associated with
ADHD [82,83], notably the NOSI gene (Nitric Oxide Synthase
1) [84], involved in the production of nitric oxide, a molecule that
plays a role in oxidative stress and neurotransmission. Variations
in the NOS1 gene have been associated by several studies with
ADHD [39,85,86]. These findings suggest that the oxidative
and immunity imbalances reported in ADHD may contribute to
its symptomatology and its severity via neuronal damage and
abnormal neurotransmitter regulation [87,79, 88,51,70,89].

Finally, if we return to the emerging idea that genes generate
the disorder when they are in the presence of environmental
factors unfavorable to the individual, but favorable to the
development of ADHD [39,46,47]. Among these, the role of
diet, although controversial, constitutes a non-negligible avenue
of understanding and prevention of ADHD [90-93]. Let us
note that dietary interventions are increasingly studied for their
potential to alleviate ADHD symptoms, possibly by reducing
subclinical allergic reactions or inflammation, as children with
ADHD are more prone to allergies [94,54]. More specifically,
the role of the digestive system, described as the “second brain”
modulated by the gut microbiota, that could be involved in human
health. Recent research on gut microbiota shows a significant
influence on our health in virtually every branch of medicine
[95]. Gut microbiota plays a significant role, with certain foods
causing pro-inflammatory states or oxidative stress by altering
gut permeability, microbiome composition and the metabolites
production [94,96,59]. Research into the bidirectional “gut-brain
axis” is currently booming and represents a revolutionary and
compelling new approach to treatment and therapy [97-101]. Only
a handful of studies have investigated the gut-brain axis in ADHD,
and several of these have demonstrated a significantly different
composition of the gut microbiota in ADHD subjects compared to
neurotypical subjects [102-107], and the abundance of one genus
significantly associated with the severity of inattention symptoms
[108]. These findings have important clinical implications as
they suggest that modifications of the gut microbiota, via anti-
inflammatory and antioxidant dietary interventions, whether
through diet or supplements, could have therapeutic potential
to reduce inflammation and thus improve clinical symptoms in
patients with ADHD [109,110,100,70].

Treatment : Methylphenidate

Methylphenidate (MPH) is the first line pharmacological
treatment of choice [111-113] and the most commonly prescribed
medication to treat ADHD [114]. According to good clinical
practice guidelines, MPH is considered as the best treatment
when combined with behavioral and psychoeducational therapies
[45,115-119,113]. It has shown very good efficacy in reducing
ADHD symptoms in 65 to 80% of cases [120], improving
attention and reducing hyperactivity and impulsivity by acting as
a dopamine agonist in the striatum [111,116,121,122]. But being
a psychostimulant, amphetamine derivative, it belongs to the class
of narcotics and presents multiple non-negligible side effects
such as loss of appetite, irritability, insomnia, headaches, risk of
arrhythmia, behavioral disorders, ... [123,124,40,65,122,125].
Long-terms adverse effects on growth and bone health have also
been suggested [111, 126-128].

MPH acts by inhibiting the pre-synaptic reuptake of dopamine
and noradrenaline, thus increasing catecholamine transmission,
in the striatum and prefrontal cortex (that participates to control
hyperactivity and inhibitory behavior) [129,40]. The result is an
increase in the concentration of dopamine and noradrenaline in
the synaptic cleft, and thus an increase in neurotransmission in
the prefrontal cortex, associated with improvement of ADHD
symptoms, such as attentional deficit and cognitive functioning
[130-131]. To be more precise, when MPH blocks dopamine
transporter (DAT), this leads to an increase in dopamine
concentration, which disinhibits the presynaptic DRD2 receptor and
activates D1 receptors on the postsynaptic neuron. This promotes
neuronal transmission, improving attention, concentration and the
organization of thoughts and actions in ADHD patients [40,132].
In the long term, MPH use could generate an inflammatory
response by promoting the loss of dopaminergic neurons and
activating microglia, leading to an increase in pro-inflammatory
markers (cytokines TNFa and IL-1b). These mechanisms
could trigger a state of neuroinflammation and contribute to a
neurodegenerative process [133-134]. As previously mentioned,
a neuroinflammation state and defective immunoregulation have
been observed in ADHD and other neurodevelopmental disorders,
which could partly explain the imbalance in neurotransmitter
activity [87,79,41,52,53,51,131]. Consequently, prolonged use of
MPH is linked to an increase in the neuroinflammation observed
in ADHD, which may lead to a decrease in treatment efficacy by
disrupting dopamine transmission. Nevertheless, the molecular
mechanisms underlying MPH’s short- and long-term actions are
still poorly understood.

In addition, there is parental reluctance to use MPH, as well as
therapeutic non-compliance among ADHD patients [135-137]
with treatment discontinuation after 12 months in 30-50% of
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cases [138,139] and after 3 years in 66-80% of cases [140,141].
On the other hand, we are witnessing a very worrying increase
in prescriptions in Europe [142], more specifically, in Belgium,
with daily doses for children aged 6 to 12 rising from 1.5 million
in 2006 to 2.2 million in 2016 [143,131], which is becoming a
real public health concern, especially as the long-term effects of
MPH are currently still poorly and insufficiently documented. In
this population of children and adolescents, let’s not forget that
somatically speaking, they are in “the pink of health”, and that
prescribing MPH, even though it is perfectly indicated, represents
a medical risk when we consider the very significant collateral
damage to school, family and health. Furthermore, from a clinical
perspective, children undergoing MPH treatment do not experience
a sense of being their usual selves. Although it improves ADHD
symptoms, MPH does not alleviate the increased risk of dropping
out of school during childhood and adolescence, nor the rate of
unemployment in adulthood [144-146].

Finally, in line with the demonstrated association between oxidative
imbalance and ADHD symptoms previously discussed, studies
suggest that MPH treatment may be associated with an increase
in oxidative stress, which may worsen the pre-existing imbalance
[147-150], potentially leading to apoptosis and neurodegeneration.
These observations have promising clinical therapeutic
implications, including this avenue for future treatment research.
However, the exact mechanisms whether MPH use increases or
decreases oxidative stress remain unclear and insufficient [40].

Taken together, these data highlight the current priority that
must be given to research into alternative natural therapies [70].
As the etiology is not always clear, this can hinder effective
treatment research [45], it seems important to be able to identify
the short-, medium- and long-term adverse effects of MPH
[151]. But also to have recourse to natural treatments that target
functional deficits that can improve symptoms in the long term,
without side effects and with better treatment compliance. Given
previous research highlighting alterations in the immune system
and oxidative imbalance [79,77,80,67,78,70,81], as well as a
constant neuroinflammatory state in ADHD [41,54] that can affect
catecholamine circulatory pathways, these imbalances should be
taken into account in both diagnosis and therapeutic pathways
[77,152]. This could pave the way for new natural treatments
with a mechanism of action based on improving these systems,
possibly including a nutritional approach (food supplements or
diet) which could have beneficial effects on prevention, treatment
and prognosis of ADHD, through a possible rebalancing of the
gut microbiota [153]. The latter has been shown to be dysbiotic
in ADHD and crucial for physical, mental and cognitive health
[99,104,100,105]. To date, several natural treatments considered
safer have already demonstrated positive effects on ADHD

symptomatology [154,131]. Among these, polyphenols, still
under-studied in ADHD, are recognized for their antioxidant,
immunomodulatory and anti-inflammatory properties, as well
as their probiotic effect on gut microbiota, and constitute an
encouraging and convincing new intervention pathway for the
treatment and prevention of ADHD [154,54,70].

Pycnogenol®, an alternative to MPH
Composition and toxicology

Pycnogenol®, issued from a maritime pine, Pinus Pinaster, and
essentially composed of polyphenols (flavonoids, phenolic
acids, catechin, taxifolin and procyanidins) is recognized for its
antioxidant, immunomodulatory and anti-inflammatory properties
on the human body [155,156]. It is a polyphenol concentrate,
composed of procyanidins, catechins, taxifolin and various
phenolic acids [157-159], which stimulates antioxidant activities
and reduces oxidative DNA damage [160]. The nutritional
preparation is extracted from crushed bark, which then undergoes
a patented extraction process [161]. Its chemical composition
has been shown to be more stable over time than that of other
plant extracts, making it more reliable as a therapeutic treatment
[162]. The actions carried out in the body after ingestion of
Pycnogenol® result from biotransformation and breakdown of its
phenolic compounds by microbial enzymes in the colon, yielding
smaller molecules that can be absorbed into the bloodstream and
transported to organs and tissues [163]. Pycnogenol® components
are present in some everyday foods, like some fruits, vegetables,
nuts, cereals, grains, and spices, but these can be modified during
absorption, under the influence of various factors such as dietary
fiber and gut microbiota. Consequently, the biological effects of
polyphenols in vivo are variable (enhanced or diminished effects)
and to be interpreted cautiously, associated with a limitation of
their use as a therapeutic approach [164,165,160]. However,
it is important to noticed that Pycnogenol® received the good
manufacturing practice (GMP) certification from the French
Health Products Safety Agency (ANSM) [131].

The neurocognitive properties of Pycnogenol®

Thanks to its virtues, the beneficial effects of taking Pycnogenol®
on health and in the treatment and prevention of diseases
have been widely studied and demonstrated for the following
diseases [166,159]: asthma [167,168,169] diabetes [170-172],
cardiovascular disease [173-175], osteoarthritis [176-177]. These
beneficial effects have also been observed in neurodegenerative
disecases such as Alzheimer and Parkinson [178,179] and
neurodevelopmental disorder such as ADHD [180,125].

Pycnogenol® appears to help maintain good cognitive
performance and reduce mild cognitive impairment [181-
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183]. Cesarone et al. (2020) [178] showed that after 4 weeks of
administering Pycnogenol® to patients with Parkinson’s disease,
an improvement in physical symptoms and cognitive performance
were observed. These beneficial effects have also been observed on
memory performance in Alzheimer’s disease mice models [179],
as well as in human studies, on symptoms of hyperactivity and
inattention associated with the diagnosis of ADHD [184,180,153].
Studies have shown that taking Pycnogenol® improves cognitive
performance in individuals of all ages and from diverse patient
populations. These benefits have been observed in populations of
varying ages, notably on the cognitive performance of students,
healthy adults and the elderly [185,186,183]. Specifically, taking
Pycnogenol® appears to be associated with better performance
in working memory, planning, mental flexibility, memory and
attention, as well as better scores on the Mini-Mental State
Examination (M.M.S.E) [182]. One study evaluated the effect of
Pycnogenol® treatment, compared with Placebo, of elderly people
with moderate cognitive decline on their cognitive performance,
also using blood measures of oxidative stress (clinical liver

enzyme levels, serum lipid profile, human growth hormone and
lipid peroxidation products). They highlighted an improvement in
working memory capacity (spatial and numerical), linked to the
level of oxidative stress, reduced by taking Pycnogenol® [183].

Pycnogenol® in ADHD

However, only a few studies have investigated the effects of
Pycnogenol® on ADHD [184,187,155,188-190,180,125,81].The
studies are methodologically highly variable. To demonstrate
the effects of Pycnogenol® treatment, it was either compared
with placebo, MPH or both, and participants with ADHD were
sometimes compared with a control group. There was also
considerable heterogeneity in the variables investigated and the
means used (symptoms, diet, questionnaires, catecholamine
analyses, oxidation and antioxidant status, etc). The table below
(Table 1) lists the studies that have investigated the effects of
taking Pycnogenol® on ADHD, their methodological features,
objectives and variables studied.

Study Method Participants Age Treatment TreatITlent Aim Outcomes
Duration

Weyns et al., | Double blinded Effects on . )
2022 randomized ADHD (n=88) %js EED R RIHEL ) e ADHD ?ggzﬁg’ SEQ;
(part 1) [125] | clinical trial y symptoms ’

Double blinded
Trebaticka . Effects on
etal, 2006 | andomized ADHD (n=61) | 14 Pyc®vsPb | 4 weeks ADHD CAP; CTRS; CPRS;
[180] placebo- years SVIIDtOmS WISC IV

controlled study ymp

Self-report rating scales
Tenenbaum Double blinded Effects on
. ) Rating scales
etal, 2002 | rndomized ADHD (n=24) | 2453 | PYe®wsMPH | 5 ooy ADHD .
191 control clinical years " completed by
[191] trial symptoms individual’s significant
other; CPT
Effects on

Double blinded ADHD

randomized symptoms
Hsu et al., placebo- _ 7-20 & Effects in Blood sample; SNAP-
2021 [189] controlled ADHD (n=20) years Pyc® vs Pb 4 weeks Rebalancing IV; CPT; Food diaries

Cross-over Oxidative

study Stress

Pathways
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Diet: Relationship
ADHD Evaluation of between
Darzi et al., Case-control (n=200) vs 4-14 the quantity of / dietary
2022 [187] study CTRL (n;Z 00) years polyphenols polyphenol PhenolExploreData
ingested in intake and the
food risk of ADHD
Effects on
. immune,
;’:)’(;);ns etal, gﬁg‘gﬁiggded ADHD (n=88) 6-12 Pyc® vs MPH 10 weeks oxidative FFQ; Blood sample;
. . years vs Pb stress and Urine sample
(part 2) [81] clinical trial .
neurochemical
biomarkers
Double blinded Effects on
Chovanova | randomized ADHD (n=61) oxidative
et al., 2006 placebo- vs CTRL 6-14 Pyc® vs Pb 4 weeks DNA damage Blood sample
[184] controlled study (n=58) years and total
antioxidant
status (TAS)
Double .blinded Effects in
Dvarkova randomized rebalancing .
etal, 2006 | Placebo- ADHD (n=43) | &14 Pyc®vsPb | 4 weeks Oxidative Blood sample;
[155] controlled study years Stress (+clinical symptoms)
Pathways
Double })linded Effects in
Dvarkova randomized ADHD (n=57) rebalancing Urine sample; Blood
ctal, 2007 | Placebo- vs CTRL 6-14 Pyc® vs Pb 4 weeks Oxidative sample; (+ clinical
[188] controlled study | 17, years Stress symptoms)
Pathways

Table 1: Studies investigating the impact of Pycnogenol® in ADHD, and their methodology; ADHD = Attention Deficit Hyperactivity
Disorder ; ADHD-RS = ADHD Rating Scale ; CAP = Child Attention Problems teacher rating scale ; CPRS = Conner’s Parent Rating
Scale ; CPT= Continuous Performance Test ; CTRL = Controls; CTRS = Conner’s Teacher Rating Scale ; FFQ = Food Frequency
Questionnaire ; MPH = Methylphenidate; Pb = Placebo ; PCQ = Physical Complaints Questionnaire ; Pyc® = Pycnogenol®; SEQ
= Social-Emotional Questionnaire ; SNAP-IV= Sawson, Nolan, and Pelham Version IV ; WISC-IV= Wechsler Intelligence Scale for

Children.
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Symptoms

To our knowledge, only 3 studies have looked specifically at the
effects of Pycnogenol® on ADHD clinical symptoms. In 2006,
Trebaticka et al. studied the effect of Pycnogenol® on a series of
cognitive and clinical variables [180]. Compared with placebo,
they found a reduction in hyperactivity and inattention symptoms,
and an improvement of cognitive function such as visuomotor
coordination and concentration. No significant effects were
observed in the placebo group. The authors also measured the
effects of treatment on symptoms over time: 1 month after stopping
treatment, they observed a relapse of symptoms at the initial level,
suggesting that Pycnogenol® has effects on symptoms without
fundamentally altering the processes underlying the disorder.
Except for the visuo-motor coordination and concentration
cognitive tests, which exhibited sustained enhancement in
performance even 1 month after stopping treatment. However, the
authors attribute this improvement to a learning effect.

Another recent study (2022), controlled not only by placebo but also
by MPH, showed a significative improvement on hyperactivity and
impulsivity symptoms after 10 weeks of administration, both for
MPH and Pycnogenol®, which is an extremely promising result.
Regarding attentional aspects, an improvement with both products
was shown, but significant only for MPH [125]. It should also be
noted that the effects of MPH were already visible after 5 weeks,
whereas for Pycnogenol® it took 10 weeks to observe significant
effects. This result was expected by the authors, given the slower
mechanisms of action known from natural food supplements.
What’s more, the study revealed a virtual absence of side effects
in patients treated with Pycnogenol®, compared with a significant
increase in side effects reported in patients treated with MPH, after
5 and 10 weeks. These very promising results concerning side
effects will be discussed in greater detail later in this review.

With regard to effects on ADHD symptomatology, we can also cite
Hsu et al. (2021) [189], who studied the effects of polyphenolic
compounds in pine bark extract (Oligopin®) (same composition
as Pycnogenol®: including of 67%—75% oligomeric procyanidins,
4%—10% catechin, 4%—10% ferrulate glucoside, 3%—8% taxifoliol
glucoside, 1%—5% ferulic acid) on symptoms of inattention
and impulsivity and attentional performance in children with
ADHD. The dose administered to patients was similar to studies
conducted to date with Pycnogenol®. The polyphenol treatment
was compared with placebo. Results revealed a notable decrease
in inattention and impulsivity performance assessed through
CPT-III, as well as a reduction in hyperactivity/impulsivity and
inattention symptoms evaluated by the SNAP-IV, among children
with ADHD after four weeks of treatment. Conversely, in line with
their expectations, the placebo group did not show any discernible
effect. Through the examination of blood samples, the study also

revealed a decrease in oxidative stress, but failed to show that this
correlated with symptomatic improvement, suggesting the need
for future investigations into this link.

Pycnogenol® is characterized by a lack of side effects, compared
with MPH. In the study by Weyns et al. (2022) [125], and in line
with existing literature [122,180], participants reported up to 5
times more side effects with MPH than with Pycnogenol®. It has
been highlighted that in 70 clinical studies conducted on healthy
and patient subjects (5723 subjects : children and adults), the overall
frequency of adverse reactions to Pycnogenol® is very low (1.8%)
and these are mild and unrelated to dose or duration of treatment
[122,70]. The gastrointestinal discomfort is the most frequently
occurring side effect which can be countered if Pycnogenol® is
taken during or after meals [122,180,70]. Dizziness, headaches,
and nausea are among the most commonly reported side effects.
Moreover, since its introduction on the European market, no
severe adverse effects have been reported [161]. Consequently, the
administration of Pycnogenol® in children and adolescents could
be a very promising alternative to MPH, effective, natural, safe and
reassuring for patients and their parents who fear the side effects
of existing drugs. Pycnogenol®’s virtual absence of side effects
could, in the long term, be accompanied by improved therapeutic
compliance.

To date, only one study has shown no significant positive effect
of Pycnogenol® on ADHD symptoms [191]. But this study also
showed that there was no significant effect of MPH compared with
placebo. The three treatments did not differ significantly from each
other, which is quite unusual and surprising in the literature, as
even MPH showed no effect. They therefore do not fundamentally
contradict the 3 studies cited above [54]. The absence of results
can probably be explained by the fact that the treatment duration
was too short to observe any real effects: 3 weeks. In addition, it
would appear that the study lacked power [180]. Today, studies
on Pycnogenol® suggest that a treatment duration of at least
10 weeks is considered long enough to observe clear effects
while minimizing patient burden and maximizing compliance
[180,131,153,125].

In summary, studies investigating the effects of Pycnogenol®
on ADHD symptomatology, after a sufficiently long course of
treatment, consistently show an improvement in attention and
a reduction in impulsive and hyperactive behavior. Combined
with a virtual absence of side-effects, these highly promising
results suggest that Pycnogenol® could be a fully-fledged, natural
therapeutic alternative with no side-effects. However, at this
moment, we still lack sufficient evidence since the studies, which
are too limited in number, vary in methodology and demand a
genuine, rigorous commitment to scientific inquiry.
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To date, the effects of Pycnogenol® on ADHD symptoms have
been studied exclusively through clinical questionnaires completed
by parents and/or teachers, and the 3 studies cited above, while
methodologically divergent, each point to differences in results
and sensitivity between parent and teacher scales, which has
already been discussed and demonstrated in the existing literature
[192,193]. Indeed, Weyns et al. (2022) [125] show that the positive
effects of ADHD symptoms were found only with teacher ratings
and not with parent ratings. Similarly, Trebaticka et al. (2006)
[180] found a clear improvement with teacher ratings, but a weaker
and less obvious improvement with parent ratings. This loss of
sensitivity by parent scales was also noted by Hsu et al. (2021)
[189] showing improvement with Placebo and this phenomenon
could be explained by the fact that children’s classroom behaviors
are more strictly controlled and visible than behaviors at home
[194]. Also that teachers are probably more objective and sensitive
to behavioral changes as they compare the child to other children
in the class and are less emotionally involved in the task. In
contrast, parents may be more stressed and focused on their child,
which could affect their sensitivity and reduce the possibility of
noticing symptomatic improvements in their child [195,125]. And
as Weyns et al. [125] point out, this phenomenon could be all the
more important with Pycnogenol® given its slower and more
subtle effects, compared with MPH. In addition, it is important
to note that MPH acts during school hours and children see their
effects fade by the time they go home, while Pycnogenol® seems
to offer a prolonged action that should be perceptible both at school
and at home, but in a more discreet way.

These results raise question about the use of clinical questionnaires
that are highly subjective and sensitive to biases related to
the respondent and the conditions of observation. It is highly
probable that the evaluation of cognitive and symptomatological
repercussions, using behavioral scales alone, is insufficient to
specifically and, above all, more objectively identify the impact
of the product on cognitive functions. Even more so given the
cognitive deficits (executive and attentional) found in ADHD,
widely documented in existing scientific literature, and at the
heart of its symptomatology [17]. Given also the pro-cognitive
effects of Pycnogenol® demonstrated in healthy subjects and
in neurodegenerative diseases [185,181,178,182,186,179,183].
At present, therefore, it seems essential to be able to objectivize
the response to Pycnogenol® treatment with appropriate and
measurable neuropsychological tests, enabling its probable effects
on the brain to be explored more directly. Despite these very
encouraging initial investigations, this field of research is still
in its infancy and requires more in-depth explorations aimed at
measuring the impact of taking Pycnogenol® on the cognitive
performances shown to be impaired in ADHD and constituting the
core of its symptomatology, such as divided attention, selective

attention, inhibition, flexibility, working memory, vigilance, delay
aversion and reaction time variability [13,14,17,196,16].

As Pycnogenol® is composed exclusively of polyphenols, known
for their antioxidant and immunomodulatory properties, Darzi et al.
(2022) [187] set out to study the relationship between a polyphenol-
rich diet and the risk of developing ADHD in kindergarten and
primary school children aged 4 to 12. Impressively, the authors
were able to confirm their hypotheses, showing that increased
dietary intake of polyphenols, calculated by a questionnaire
evaluating the level of polyphenols ingested in their daily diet, is
associated with a lower risk of developing ADHD. The authors call
for prospective studies to confirm these observations and explore a
causal link. Their results are therefore consistent with the idea that
polyphenols (contained in a large number of plant foods) could
have a protective effect against ADHD, but how exactly do they
act in ADHD?

Mechanism of action of Pycnogenol®
The NO pathway and the brain

In its link with the brain, Pycnogenol® is supposed to acts via the
nitric oxide (NO) production pathway. The active metabolites of
Pycnogenol® (flavonoids, phenolic acids, catechin, taxifolin and
procyanidins) that accumulate in endothelial cells have been shown
to cross the blood-brain barrier [197]. Indeed, its mechanism of
action is based on its ability to enhance endothelial vasodilation
by increasing NO production [173,198]. NO influences a
range of physiological functions, including neurotransmission,
development, plasticity, and neuronal apoptosis [199-200].
Numerous reports have also demonstrated that NO might be
involved in memory [160], and learning [201,202], and may be
associated with ADHD [75,203]. Since the latter has beneficial
effects on cerebral function by vascular smooth muscle relaxation,
NO leads to increased blood flow and ensures a sufficient
supply of oxygen to neuronal cells, regulating noradrenaline and
dopamine release and intake [204-206,197,131]. NO inhibits the
activity of monoamine transporters, thus influencing the levels
of dopamine and noradrenaline in the extracellular space [206].
This parallels the action of MPH, however, NO, being a gaseous
neurotransmitter, operates differently by acting through cell
membranes. Furthermore, NOS1 a crucial enzyme responsible for
generating the signaling molecule NO in neurons, plays a role in
promoting the growth of neurites, indicating a potential impact
on early brain development [207]. Simpson et al. (2019) [159]
explain the beneficial effects of Pycnogenol® on cognition in their
review as follows: “it acts as a regulator and protects cells from
oxidative stress 1) by being a powerful free radical scavenger; 2)
by protecting DNA from damage; 3) by increasing the synthesis
of antioxidant enzymes; and 4) by protecting other endogenous
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antioxidants (vitamin C, vitamin E and glutathione) from oxidative
damage” [160,161,159].

Inanimal models, research shows abeneficial effect of Pycnogenol®
on the brain. Specifically, studies have shown that Pycnogenol®
has neuroprotective properties following traumatic brain injury in
rats. This effect appears to be achieved by reducing oxidative brain
damage, levels of pro-inflammatory cytokines and loss of synaptic
proteins, thereby preserving synaptic function [208,110,209,131].
Moreover, in models of neurodegeneration associated with
oxidative stress, Pycnogenol® demonstrates positive effects by
enhancing choline acetyltransferase activity (ChAT; an enzyme
found in the nervous system that catalyzes the synthesis of the
neurotransmitter acetylcholine (ACh), a vital neurotransmitter
involved in various physiological functions, including regulation
of heart rate and transmission of nerve impulses in the brain) in
the hippocampus, increasing Glutathion (GSH) levels (a marker of
oxidative stress, considered a relevant clinical marker in disorders
in which stress plays a role), and reducing protein carbonyl levels
(a marker of oxidative damage to proteins and is commonly used
as a measure of oxidative stress in biological systems) [210,131].

In human studies, Pycnogenol® is also believed to exhibit
neuroprotective properties through its antioxidant pathway, by
preventing B-amyloid-induced neuronal cell death in Alzheimer’s
disease [211,179]. Belcaro et al. (2014) demonstrated in a study
involving healthy adults that Pycnogenol® not only enhanced
cognitive function but also reduced anxiety levels by significantly
lowering oxidative stress compared to the control group, which
maintained elevated levels of oxidative stress [185]. These findings
imply that Pycnogenol® could serve as a therapeutic option for
individuals experiencing high oxidative stress levels, potentially
benefiting cognition and anxiety.

In ADHD

So, as mentioned, Pycnogenol® is supposed to act on the brain
via the NO production pathway. Is this the mechanism by which
Pycnogenol® could improve symptoms and cognitive function
in individuals with ADHD ? Indeed several studies suggest that
ADHD may be associated with altered NO signaling pathways
[212,203]. NO levels, associated with the oxidant-antioxidant and
immune imbalance highlighted in ADHD, modulating stress levels
in the brain and affecting neurotransmission, appear to influence
behavior and cognitive functioning in several areas: impulsivity,
aggression, anxiety, depressive symptoms and cognitive
performance [213,214]. More precisely, NOS1 is associated with
a range of neurodegenerative and psychiatric disorder, such as
ADHD and other impulsivity disorders [213,215-217,84]. This
gene variant was one of the prominent discoveries in an ADHD
GWAS study as well [39]. Studies have revealed that 28% of

adult ADHD patients possess a particular genetic variation in the
NOS1 promoter region (termed ex1f~-VNTR) leading to reduced
NOST1 expression. This variation is closely linked to alterations in
the functioning of brain regions such as the prefrontal cortex and
ventral striatum, both implicated in the impulsive and aggressive
behaviors frequently associated with ADHD [212,218,84]. On the
neurobiological level, NO may play a role in the development and
brain organization of white matter [85]. Additionally, the NOS1-
ex1f gene has been linked to the severity of ADHD symptoms
[39, 219, 85]. Depending on the study, this connection was
age-dependent (only in adult) [219] and/or gender-dependent
(only in girls) [84,86], and was also specifically associated with
the impulsive/hyperactive and combined types of ADHD, not
inattention type only [84-86]. These findings indicate that the
NOSTI gene, which produces the gaseous neurotransmitter NO and
is linked to ADHD symptoms, is a potential candidate gene for
ADHD [86].

Extended to an animal model, researchers support the hypothesis
of the involvement of NO in ADHD, suggesting that NOS
dysfunction could lead to ADHD-like symptoms, particularly
inattentive phenotype [220,212,214,221,84]. Additionally, authors
demonstrated that administering MPH increased NOS expression
and that giving mice a NOS inhibitory drug altered their response
to MPH [220,222]. Hayman & Fernandez (2018) [223] conducted
a human genetic analysis identifying 14 interconnected genes
enriched with pathways related to NO and alpha-1 adrenergic
synthesis in ADHD. These genes were found in the cerebellum
early in life, transitioning to the cortex during childhood and
adolescence. To date, the data leads to the hypothesis that a
genetic variation and dysregulation in prefrontal NOS1 contribute
to cognitive deficits and a downregulation of striatal NOS1 is
associated with impulsive phenotypes [213]. These investigations
provide understanding into the genetic and neurodevelopmental
dimensions of ADHD while also emphasizing the promise of
natural therapeutic interventions that target this pathway, such as
Pycnogenol®.

At present, the biochemical antioxidant and immunomodulatory
effects of Pycnogenol® are not fully elucidated and require
further investigation [81]. Nevertheless, several promising results
have been demonstrated in ADHD. It has been shown that the
concentration of catecholamines (stress hormones) is positively
correlated with hyperactivity in children with ADHD [188]. Authors
have shown that taking Pycnogenol® for 1 month improves ADHD
symptoms, and that this is the result of a reduction in dopamine
levels and a tendency to lower adrenaline and noradrenaline levels
in the urine. Studies by Chovanova et al. (2006) et Dvorakova
et al. (2006) [184,155] concur with these findings, also showing
that after 1 month’s treatment with Pycnogenol®, there was a
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normalization of stress hormone (catecholamine) levels, including
adrenaline, noradrenaline and dopamine, in children with ADHD,
associated with a reduction in hyperactivity/impulsivity symptoms
[184]. In addition, they showed that oxidative stress and incidents
of DNA damage were significantly reduced (by 6.3% and 35.4%
respectively). In addition, Pycnogenol® increases the reduced
glutathione (GSH)/ oxidized glutathione (GSSG) ratio (a marker of
oxidative stress, considered a relevant clinical marker in disorders
in which stress plays a role), accompanied by an increase in the
level of the total antioxidant status (TAS), in favor of an antioxidant
effect [188,189]. After treatment with Pycnogenol®, there was a
negative correlation between the GSH/GSSG ratio and dopamine
concentration, suggesting an improvement in redox homeostasis
and dopamine neurotransmission [188,189,54]. These results
demonstrate the antioxidant effect of treatment with Pycnogenol®
[189], suggesting that the immune and oxidant-antioxidant
imbalance track offers potential for dietary supplements composed
of polyphenols [54,70].

New perspectives: Gut microbiota

Finally, studies have also shown that polyphenols and their
metabolites have a prebiotic effect on the gut microbiota by
stimulating its growth [224]. Polyphenols increase the families of
good bacteria and reduce the number of pathogenic bacteria in the
gut, thereby improving gut permeability [225,226]. This has been
studied in human and animal diets, in vitro and in vivo. Studies
are converging to show that polyphenols, with their antioxidant
and anti-inflammatory properties, can also be used to modulate the
gut microbiota [227-234,224,153]. As gut microbiota is thought
to be altered in ADHD due to oxidative and immune imbalance
[77], Pycnogenol® could act on the latter through its antioxidant
and anti-inflammatory effects [102] and would be favorable to
the composition of the gut microbiota. Thus, a rebalancing of the
gut microbiota could be involved in the effect of Pycnogenol®
on ADHD symptomatology and possibly cognitive functioning.
Research into the microbiota and ADHD is totally new, and
the exploration of this type of data presents a major challenge
for the prevention and treatment of this disorder. In view of
the existing literature on the gut-brain axis, the study of the
association between gut microbiota and cognitive performance
remains unexplored in ADHD and nebulous in neurotypical
subjects. As gut microbiota and bioinformatics analyses become
increasingly advanced, conducting a study in this field would be
highly valuable. This research could enhance our understanding of
ADHD’s etiopathogenesis and aid in developing prevention and
treatment strategies that directly target the gut microbiota through
diet or dietary supplements, such as, most likely, Pycnogenol®.

Conclusion

In conclusion, ADHD, the most prevalent neurodevelopmental
disorder is considered to be multifactorial with complex
determinism, but to date, neither genetic nor specific environmental
factors have been clearly identified. More recently, studies
have suggested the existence of immune, oxidant-antioxidant
imbalances and a neuroinflammatory state that may contribute
to ADHD symptomatology, in line with the promising new wave
of research addressing the potential role of the gut microbiota in
the expression of the disorder. This latest research highlights the
importance of environmental factors in the etiopathogenesis of
ADHD, and more specifically the importance of nutrients ingested
through food or dietary supplements.

Pycnogenol®, essentially composed of polyphenols, is recognized
for its antioxidant, immunomodulating and anti-inflammatory
properties on the human body. Thanks to these virtues, the
beneficial effects of taking Pycnogenol® as treatment of prevention
of ADHD, seems to be a very promising option. In ADHD, the
few studies carried out to date have consistently demonstrated that
treatment with Pycnogenol® for a minimum of 4 to 10 weeks leads
to an improvement in attention span and a reduction in impulsive
and hyperactivity behaviors. Combined with almost no side
effects, these highly promising results, suggest that Pycnogenol®
could constitute a fully-fledged therapeutic alternative to
MPH, natural and without side effects. Polyphenols and their
metabolites also have a probiotic effect on the gut microbiota,
which is thought to be altered in ADHD. Pycnogenol® offers a
new avenue of treatment that could improve ADHD symptoms
by reducing neuroinflammation state, oxidative stress, improving
neurotransmission and rebalancing the gut microbiota. These lines
of research are totally innovative, and the exploration of this type
of data presents a major challenge for the prevention and treatment
of ADHD, requiring future investigations.
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