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/Abstract

Polycyclic Aromatic Hydrocarbons (PAHs) are widespread pollutants in various ecosystems. These pollutants are of great

~
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concern due to their potential toxicity, mutagenicity and carcinogenicity as well as recalcitrance in the environment due to their
hydrophobicity. United States Environment Protection Agency (USEPA) has enlisted 16 of PAHs as priority pollutants that must
be disposed. Physicochemical properties of PAHs and their classification according to carcinogenicity as determined by specific
agencies have been recorded. Treatment of PAHs by physicochemical methods are expensive and having limited efficiency.
So, obligatory development of alternative technology for in situ application must be created. Microbial degradation of PAHs
represent the major mechanism responsible for cleaning up of the environment and recovery of PAHs contaminated sites. The
main goal of this review is to provide an outline of bacterial degradation pathways of PAHs catabolism. A number of bacterial
genera that metabolize PAHs have been isolated (4lcaligenesspp. Bordetellaspp. Bacillusspp. Rhodococcusspp. Pseudomonas
spp. and Mycobacteriumspp.). This review includes the catabolic pathway of the Low Molecular Weight-Polycyclic Aromatic
Hydrocarbons (LMW-PAHs) and High Molecular Weight-Polycyclic Aromatic Hydrocarbons (HMW-PAHs) by different
bacterial isolates and strains. Also the catabolic enzymes (Monooxygenases and diooxygenases) involved in bacterial catabolic
pathways has received a considerable attention for better understanding of the catabolic pathways. Application of bacterial
strains in treatments of Refinery Waste Water of Petroleum (RWP) have been taken in consideration to facilitate the development
of new treatment methods to enhance PAHs bioremediation as a sole compound or in a mixtures in polluted ecosystems.

Biodegradation;  High  molecular in which different petroleum oil industries such as fuel are fast
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Introduction

In recent years, there has been increasing concern over
public health threated presented by introduction of petroleum
hydrocarbon pollutants in environment due to anthropogenic
activities to a greater extent and natural process to less extent [1].

The rapid economic growth achieved in last decade has been
paralled by an increase in global petroleum oil consumption [2]

growing, synthetic polymers and petrochemicals. Polycyclic
Aromatic Hydrocarbons (PAHs) are category of over 100 various,
compounds released from incomplete combustion source[3].These
sources are either natural i.e. petroleum industry activities as well
as accidental spills, bush fire, forest and volcanoes eruptions or
manmade combustion i.e. care emission, cigarette smoke, wood
burning and combustion of dung and crop residues [4-6].

PAHs are a group of hydrophobic hydro carbonic compounds
consisting of two or more combined benzene rings in linear,
angular or cluster arrangement[7-9].Most of PAHs persist in the
ecosystem for many years owing to their hydrophobicity and their
absorption to solid particles[10,11].
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Physical and chemical properties of PAHs

PAHs are organic substance made up of carbon and hydrogen they can be divided into two categories: Low Molecular Weight
(LMW-PAHSs) compounds consisting of fewer than four rings and High Molecular Weight (HMW-PAHs) compounds of four or more

rings. Pure PAHs are usually colored crystalline solids at ambient temperature [12].Chemical structures of some commonly PAHs are
indicated in Figure 1.
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Figure 1: Chemical structures of some PAH compounds.

Physical and chemical characteristics of some priority PAHs listed by the USEPA are shown in Table 1.

Compound M.F. Configuration M.wt. M.P.°C B.P.°C R.N. D.C. Class
Naphthalene C, H; 128.1 80.2 218 2 0 LMW
Anthracene CH, 178.1 216.4 342 3 0 LMW

Phenanthrene C H, 178.1 100.5 340 3 0 LMW
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Pyrene CH, 202.0 393 150 4 - HMW
Benz|a]anthracene C.H, 228.1 158 438 4 + HMW
Chrysene C.H, 228.1 254 448 4 + HMW
Benzo[a]pyrene C,H, 252.1 179 495 5 ++ HMW
Benzo|e|pyrene C,H, 252.1 178[13] 492 5 + HMW
Benzo[ghi|perylene C,H, 276.1 277 500 6 + HMW
Dibenzo[def,mno]
Chrysene C, H, 276.1 264°C [14] 497 6 - HMW
(Anthanthrene)
Benzo|c|chrysene C,H, 278.1 524 5 + HMW
112-114
Benzo[g|chrysene C,H, 278.1 oC[15] 524 5 + HMW
Benzo|rst]pentaphene 281.5°C
. ++
(Dibenzo[a,i]pyrene) C.H, 302.1 [16] 552 6 HMW
Dibenzo[a,h|pyrene C H, 302.1 315°C [16] 552 6 ++ HMW
M.F.; Molecular formula,Mwt; Molecular weight, B.P.°C; Boiling Point Celsius degree, M.P. °C; Melting point Celsius degree, D.C.;
Degree of Carcinogenicity, (-); Not available, (0); limit Effect, (+); Moderate effect, (++); High effect, LMW; Low Molecular weight and
HMW; High Molecular weight.

Table 1: Physical and chemical characters of some PAHs [17,18].
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PAHs possess very characteristic UV absorbance spectra. As each ring structure has unique UV. Spectrum, each isomer exhibits
a unique absorbance spectrum also. This is especially useful in identification of PAHs [19].

Regarding to the mutagenic and carcinogenic effects from chronic exposure to PAHs and their metabolites classifications as
enlisted by US. Department of Health and Human Services (HHS), International Agency for Research on Cancer (IARC, 2009)[20]and
US. Environmental protection Agency (USEPA, 2007)[21] are indicated in Table 2.

Agency PAH Compound(s) Carcinogenic Classification
®*  benz(a)anthracene,
*  benzo(b)fluoranthene,
US. Departgl::;ti:;sl-(lle{a}llt:)and Human ®  benzo(a)pyrene, Known animal carcinogens
e dibenz(a,h)anthracene, and indeno(1,2,3c,d)
pyrene.
® benz(a)anthracene andBenzo (a)pyrene. Probably carcinogenic to humans

*  benzo(a)fluoranthene,
*  benzo(k)fluoranthene, andideno(1,2,3-c,d) Possibly carcinogenic to humans
pyrene.

International Agency for Research on
Cancer (IARC)

anthracene,
benzo(g,h,i)perylene,
benzo(e)pyrene,

chrysene,

fluoranthene,

fluorene,

Phenanthrene, and pyrene.

Not classifiable as to their
carcinogenicity to humans

benz(a)anthracene, Probable human carcinogens
benzo(a)pyrene,

benzo(b)fluoranthene,
benzo(k)fluoranthene,

chrysene,

dibenz(a,h)anthracene, andindeno(1,2,3-c,d)
pyrene.

U.S. Environmental Protection Agency
(EPA)

acenaphthylene,

anthracene,

benzo(g,h,i)perylene,

fluoranthene,

fluorene, phenanthrene, and pyrene.

Not classifiable as to human
carcinogenicity

Table 2: Carcinogenic classification of selected PAHs by specific Agencies.
Pad impact of PAHs on human

PAHs pose high risks on human populations[22,23].United State Environmental protection Agency (USEPA) has enlisted 16 of
PAHs as priority pollutants[21].PAHs have a potential to induce malignant tumors that primarily affect skin and other epithelial tissue
as they have a great affinity for nucleophilic center of macromolecules like RNA, protein and DNA[24].

PAHs induce Geno toxicity, mutagenicity and carcinogenicity as shown in different living organisms or cell lines [24,25-27].
PAHs are environmental carcinogens[28], associated with skin, lung, pharynx, oral and other cancers [29].

Galicia, eye redness, headache, sore throat, trauma, nausea, dizziness, breathing difficulty and abdominal pain have been
reported[30]. Lung cancer is expected to cause 10 million deaths per year worldwide by near 2030[31],also PAH-DNA adducts have
been detected in blood from newborns whose mothers were living in polluted sites[32].PAHs from stable and depurating DNA adducts

4 Volume 5; Issue 01

Arch Pet Environ Biotechnol, an open access journal
ISSN: 2574-7614



Citation: Abo-State MAM, El-Kelani TA (2020) Bacterial Biodegradation Pathways of Low and High Molecular Weight Polycyclic Aromatic Hydrocarbons (PAHs).

Arch Pet Environ Biotechnol 5: 158. DOI: 10.29011/2574-7614.100058

in mouse skin to induce paraneoplastic mutations. Depurating
adducts play a major role in forming tumorigenic mutations[33].A
number of PAHs found in cigarette smoke of US and European
brands, such as Benz[a]-anthracene and Benz [a]-Pyrene have been
classified as carcinogens by the International Agency for Research
on cancer|[34], causing lung cancer mortality[35-37].

Epidemiological studies have shown evidence that cancer,
birth defects, genetic damage[20], immunodeficiency[21],
respiratory [38] and nervous system disorders [21] can be linked
to exposure to occupational levels of PAHs.

PAHs are rapidly distributed in wide variety of tissues with a
marked tendency for localization in body fat. Metabolism of PAHs
occurs via cytochrome P460-mediated mixed function oxidase
systems with oxidation or hydroxylation as first step[22]. Due to
lipophilic characteristics of PAHs they tend to accumulate in food
chain[39].PAHs are able to cross placental barrier and are also found
in breast milk[40].High prenatal exposure to PAHs is associated
with low IQ at age three, increased behavioral problems at age six
to eight and childhood asthma[41,42].Furthermore associated with
reduced birth weight, length and head circumference, lower scores
on childhood tests of neurodevelopment and with symptoms of
anxious / depressed and attention problems[43].

Once PAHs enter the human body, PAHs are metabolized
in a number of organs and excreted in bile and urine also
excreted in breast milk and stored in adipose tissue[44].Pyrene
is commonly found in PAH mixtures, and its urinary metabolite,
1-hydroxypyrene, has been used as an indicator of exposure to
PAH chemicals [45-49].

Physicochemical degradation of PAHs

Many conventional engineering based physicochemical
decontaminationmethods are expensive dueto the costofexcavation
and transportation of large quantities of contaminated materials
for ex-situtreatment viz soil washing, chemical inactivation (use
potassium permanganate and/ or hydrogen peroxide as a chemical
oxidantto mineralize non-aqueous contaminants such as petroleum)
and incineration[50-52].Among physicochemical methods used
for PAHs treatment, are dispersion dilution, sorption, volatilization
and abiotic transformation[53,54].

There are another chemical methods e.g, chemical oxidation
and photocatalysis remediation[55,56].Due to the increasing cost
and limited efficiency of these conventional physicochemical
treatments obligatory development of alternative technology for
insituapplication must be created, particularly based on microbial
remendation capabilities of microorganisms [51,57].

Microbial degradation of PAHs

Microbial degradation is green technology for cleanup

of pollutants by biological means include bioremediation,
biodegradation, bio-augmentation, biostimulation and
phytoremediation[58-62].

Microorganisms play crucial role in maintaining ecosystem
and biosphere to develop sustainable environmental cleaning
up [52]. They also used to mitigate adverse effects of pollutants
[54,63,64].Bacteria, fungi and alge are reported to be hydrocarbon
pollutants degraders [53,65-69].

Resistance of hydrocarbon pollutants to microbial
degradation in either soil or water tends to increase with the type
as well as molecular weight and number of rings. Naphthalene is
ready biodegraded in most situations, however PAHs with four,
five or six rings tend to be degraded much more slowly. Generally
aerobic biodegradation occurs much more rapidly than anaerobic
biodegradation[70].

Polycyclic aromatic hydrocarbons (PAHs) degrading bacteria

A large number of bacteria that metabolize PAHs have been
isolated (Alcaligenes dentrificans, Rhodococcus sp., Pseudomonas
sp., Mycobacterium sp.) [71].A variety of bacteria can degrade
certain PAHs completely to CO,and metabolic intermediates or
H,O[72].Mycobacterium spp. Sphingomonas spp., Rhodococcus
spp. and Nocardia spp. populations were selectively stimulated in
soil contaminated with PAHs or hexadecane[73].

Low Molecular weight PAHs (LM W-PAHs) degrading
bacteria

A large number of naphthalene-degrading bacteria including
Pseudomonaspanipatensis ; Pseudomonas putida; P. vesicularis;
P. paucimobilis,; Bacillus cereus;, Mycobacterium sp.; Alcaligenes
dentrificans;,  Rhodococcus sp.; Corynebacterium venale;
Cyclotrophicus sp.;Streptomyces sp.; Vibro sp. and Bordetella
avium. Have been isolated[68,74].In case of naphthalene-
degrading bacteria, a different bacteria including Arthrobacter
polychromogenes,; Aeromonas sp.; Beijerincka sp.;Micrococcus
sp. Alcaligenes faecalis;, Mycobacterium sp.;Nocardia sp.;
Bordetella sp.; Flavobacterium sp.Bacillus sp.; Vibro sp.
andRhodococcus sp.[69].The degrading bacterial strains that have
been characterized are taxonomically diverse and mainly belong to
the genera Mycobacterium, Pseudomonas, Bacillus, Sphingomonas,
and Alcaligenes.[67,75-78).Bacillus subtilis showed the highest
catechol, 1, 2 dioxygenase activity in MSM supplemented with
anthracene with 99% degradation after five days incubation [79].

High Molecular weight PAHs (HM W-PAHs) degrading
bacteria

Sphingobium KK22 isolated from soil of Texas, USA. This
strain able to grow on phenanthrene and metabolize Benzo[a]
anthracene[80].Mycobacterium RJG 11-135 is capable to degrade
phenanthrene, anthracene and pyrene at 10 to 20 fold greater than
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Benzo[a]anthracene and Benzo[a]pyrene [81].Mycobacterium
vanbaalenii PYR-1 is able also to degrade wide range of low and
high molecular weight of PAHs [82].Bacillus subtilis isolated from
contaminated soil with PAHs.Bacillus subtilis is able to transform
pyrene and Benzo[a]pyrene, but degradation rate of Benzo[a]
pyrene is greater than Pyrene [83].

Two microorganisms Bacillus SPO2 and Mucur SFO6 which
are capable to degrade PAHs, were immobilized on vermiculite
and investigate their ability to degrade Benzo[a]pyrene. Removal
rate in case of immobilized bacterial-fungal mixed consortium
was higher than that of freely mobile mixed consortium [84].
In another research, Bacillus subtilisDM-04 and Pseudomonas
aeruginosa mucoid (M) and Non-Mucoid (NM) strains isolated
from petroleum contaminated soil samples of North East India
were used to degrade pyrene.Bacillus subtilis showed higher
utilization of pyrene than Pseudomonas.

Bacillus subtilis and Pseudomonas were able to secreting
biosurfactants in the medium which enhanced the solubility
of pyrene in aqueous media leading to higher utilization of
pyrene [85].Bacterial consortium CON-3, isolated from crude
oil contaminated soil of Punjab, India cometabolized 50 pg/ml
pyrene in the presence of glucose (0.5% w/v) at 30 © C.Bacillus
PK-12,Bacillus PK-13 and Bacillus PK-14 from CON-3 were
able cometabolize pyrene in order PK-12> PK-13> PK-14 after
35 days of incubation [86].Also in India, a bacterial strainBacillus
thuringiensis NA2 was isolated from polluted site with petroleum
oil.Bacillus thuringiensis was able to degrade fluoranthene and
pyrene. By optimizing the different factors (PH, Temperature,
glucose addition etc...) which increased the biodegradation [87].
Syakti et.al., (2013)[88] isolated 6 viable and cultural bacterial
strains from contaminated mangroves. The bacterial strains
were identified by 16S RNA as Bacillus aquimaris, Bacillus
megterium and Bacillus pumilus while the other 3 strains were
related to Flexibacteraceae bacterium, Halobacilus trueperi and
Rhodobacteraceaebacterium. These strains were able to grow on
PAHs (Phenothiazine, fluorine, fluornthene, dibenzothiophene,
phenantherene and pyrene). Combination of two bacteria, Bacillus
PY-1 and Sphingomonas PY-2 and a fungus Fusarium Py-3
isolated from contaminated soils were able to degrade pyrene and
volatize arsenic independently and in combination. Removal of
pyrene in high rate was recorded after 9 days in liquid medium
and 63 days in soil [89]. Abo-State et.al., (2013,2014) [90,91]
isolated five bacterial strains from soil and water contaminated
with petroleum oil, Cairo, Egypt. The most potent strains (two
strains) were identified by16S rRNA as Bacillus amyloliquifaciens
MAM-62 with accession number 038054 and the other bacterial
strain was Achromobacter xylosoxidans MAM-29 with accession
number 038055.Both of the two bacterial strains were able to
degrade pyrene efficiently as a sole carbon and energy source.

Bacillus amyloliquifaciens MAM-62 degrade 94.1%; 90.8%;
90.6; 72.9% and 51.4% of 100,200, 300, 400, and 500 pg/l pyrene
after 21 days respectively[91].

However A. xylosoxidans MAM-29 degraded 95.0%;
90.5%;90.30%; 71.1% and 50.7% of the Benzo[a]anthracene
as same pyrene concentrations respectively[92]. However, [67]
isolated eight bacterial strains from soil contaminated with crude
petroleum oil from Egypt. The most potant bacterial strain,
isolateMAM-P8 was identified by 16Sr RNA as Bacillus altitudinis
which was able todegrade 91%,, 33% and 97% of PAHs mixture
(500 uM pyrene, 500 uM Benzo [a] anthracene and 50 uM Benzo
[a] pyrene) respectively.

Pseudomonas aeruginosaSP4 isolated from contaminated
soil produce surfactant, by enhancing biosurfactant production for
more efficient pyrene degradation[93].

Pseudomonas isolate PAHs As'removed all 60 mgl
phenanthrene and half of 20 mgl'pyrene within 60 h
respectively[94].Brevibacillus brevis adsorbed pyrene initially
on their cells and then pyrene was transported and intracellularly
degraded. The removal of pyrene (mgl') was 0.75 mgl'after 168
hours. PAHs-utilizing bacteria (26) were isolated from soil of 7
sites of Mathura refinery, India. The most potant strains were 15
strains (Bacillus, Acinetobacter, Stenotraphomonas, Alcaligenes,
Lysinibacillus, Brevibacterium, Serratia and Streptomyces were
adapted to utilize mixture of 4 PAHs (anthracene, fluorine,
phenanthrene and pyrene). A cosortium of 4 most potant isolates
were able to degrade PAHs more efficiently within 7 days[95].

In case of Stenotrophomonas maltophilia BR12 which was
isolated from oil-contaminated soil in India, it was able to grow
best at 50 pgml'pyrene and degrade nearly 100% of pyrene after
20 days and produce high amount of surfactant[96].

A batch culture of Proteus vulgaris CPY land Pseudomonas
aeruginosa LPY1 on 100 mgl'pyrene degrade nearly complete
degradation[97].Pyrene and anthracene utilizing bacteria isolated
from water used engine oil contaminated soil from Malaysia.
Thirteen different bacterial species were isolated including
Bacillusthuringiensis and Bacillus megaterium, Salmonella
enterica and Bacillus toyonesis. All isolates degraded within 7
days almost all PAHs [98].

Degradation of LMW-PAHs by the marine halotolerant
Achromobacter xylosoxidans have been determined. Glucose in
combination with a triton x-100 and b-cyclodextrine resulted in 2.8
and 1.4 fold increasing in degradation of LMW-PAHs and 7.59 and
2.23 fold increase in degradation of HMW-PAHSs respectively[99].
Mycobacterium gilvum strain PYR-GCK isolated from an estuary
polluted with PAHs and was able to degrade pyrene efficiently
[100].
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Consortium Y-12 isolated from soil sample in Haikou
city, China was able to degrade a mixture of PAHs including
phenanthrene, Anthracene, fluoranthene, pyrene and Benz[a]
pyrene. A bacterial strain was isolated from consortium Y-12 and
identified by 16S rRNA as Sphingobium sp.FB3 [101].

Staphylococcus was isolated from diesel contaminated soil
sample and identified by 16S rRNA as Staphylococcus nepalensis
which was able to degrade pyrene at PH8 and 30°C within 5
days incubation. The best bacterial growth and efficient pyrene
degradation have been recorded with Co-substrate (glucose 4%
and sucrose 2%) were added [102].

It was shown that mono culture of Pseudomonas monteilii
P26 and Pseudomonas sp. number 3 could degrade efficiently
LMW-PAHs but did not show interesting HMW-PAHs removal
capabilities whereas, the Actinobacteria rodococcus p18, Gardonia
H 19 and Rhodococcus F27 were able to degrade efficiently HMW-
PAHs, but they did not remove LMW-PAHs from culture medium.
The combination of four of these five strains (called C15 mixed
culture) removed naphthalene and phenanthrene completely, and
showed the highest pyrene biodegradation activity with removal
values close to half , almost 6 times higher than those values
recorded with strains in pure culture[103].

The degradation rates of consortium to pyrene and
fluoranthene increased compare to pure culture of PY97M [104].
Main while Pyrene was used as sole carbon energy source by
isolated strain of Pseudomonas JPYR-1 and the maximum pyrene
degradation rate was 3.07 mgml'h"! in 48 h. incubation with initial
pyrene concentration of 200 pg/ml'[105].But in case of pyrene-
degrading endophytic bacterium, Staphylococcus BJ06, this strain
was capable to degrade pyrene 50 pg/ml'[106].

Pyrene can be degraded by functional strain F14 which was
constructed through protoplast fusion between Sphingomonas
GY2B and Pseudomonas GP3A.The degradation of Pyrene by
F14 was increased as concentration of pyrene decreased from
100pug/ml'to 15 pg/ml'within 10 days. Pyrene when it was in
binary mixture with naphthalene or phenanthracene, Pyrene
degradation was enhanced but more efficient naphthalene have
been recorded than that of phenanthracene. The enzymatic activity
of binding efficiency of Actinobacter radioresistens deoxygenase
with chrysene is lesser binding energy than benzo[a]Pyrene while
in case of Rhodococcus opacusbenzo[a]Pyrene binds with lesser
binding energy as compared to chrysene [107].

Four strains that could degrade both LMW-PAHs and HMW-
PAHs were isolated from long-term manufacture gas plant site soil.
These isolates included Stenotrophomonas(MTS-2), Citrobacter
(MTS-3) and the most efficient isolate was Pseudomonas(MTS-1)
in degradation of HMW-PAHSs[108].

The bacterial strains Burkholderia fungorum T3A13001 and
CaulobacterT2A12002 were pyrene degraders.Caulobacter sp,

degraded 21% and 24% of Pyrene at 9.0 pH and 5.0 respectively,
while B. fungorum was active in a wide range of pH values[109].
Main while anew halophilic bacterium capable of degrading HMW-
PAHs were isolated from costal soil of the yellow sea, China. This
bacterium was identified by 16S rRNA as Thalassospira TSL5-1.
The Pyrene degradation occurred at salinity ranging from 0.5% to
19.5% with optimal value between 3.5% and 5% and degradation
of Pyrene influenced greatly by pH values [110].Twenty one
isolates from human skin having abilities to degrade benzo[a]
Pyrene have been isolated and characterized. Benzo[a]Pyrene
was completely degraded by at least 4 isolates. These isolates
included Gram positive and Gram negative with micrococci being
predominant[111].

A novel strain of Bacillus BMT4i capable of utilize
Benzo[a]Pyrene as a sole carbon and energy source via enducible
chromosomally encoded pathway was isolated. This strain was
improved by inducing random mutations through treating by
physical mutagen (UV) or chemical mutagen (ethyle methyl
sulphonate [EMS], 5-bromouracil [SBU] and Acridine Orange
[AO]). It was found that a UV-mutant (BMT4imuv2) exhibited
higher Benzo[a]Pyrene degradation when compared with the wild
type[112,113].Also, nine bacterial strains capable of degrading
Benzo[a]Pyrene were isolated from Tokyo Bay and Tama River
in Japan. The isolates belonged to the phyla Proteobacteria,
Actinobacteria, Bacteroidetes and firmicutes. Isolate IT B II was
identified by 16StRNA as Mesoflavibacter zeaxanthinifaciens.
This strain utilize Benzo[a]Pyrene as a sole carbon and energy
source[114].

Over 33 days pyrene sorbed on hydrophobic filters more
than half of pyrene than the five ring Benzo[a]pyrene and Benzo[a]
fluoranthene by microbes having the ability to specialize in
adhesion. Most bacteria enriched by HMW-PAHs were Bacillus,
Mycobacterium and Pseudomonas [115].

Enzymes and genes involved in PAHs-degradation

Enzymes play an important role in microbial degradation of
PAHEs, oil, fuel activities and many other compounds[116].

Oxidoreductase are enzymes that clear chemical bonds and
transfer the electrons from the reduced organic substrate (donner)
to another chemical compound (acceptor). During these oxidation
reduction reaction, contaminants are oxidized to harmless
compounds. Oxygenases classified under the oxidoreductase
group of enzymes [117].0xidation reaction is the major enzymatic
reaction of aerobic biodegradation is catalyzed by oxygenases.

Oxygenases metabolize organic compounds, they
increased their reactivity, water solubility and cleave the organic
ring[118].0n the bases of the number of oxygen atoms used for
oxidation, oxygenases can be further divided into two groups:I)
Monooxygenases and II) Dioxgenases.
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Monooxygenases transfer one atom of molecular oxygen to
the organic compound and they possess highly region selectivity and
steroselectivity on a wide range of substrates[118].The members
of the genus Pseudomonasare known to have diverse metabolic
pathways and grow using different substrates as a source of carbon
example Pseudomonas aeruginosa NTB1 [119].Pseudomonas
stutzeri produce catechol 2, 3 dioxygenase responsible for Meta
cleavage of catechol[120].

PAH-induced proteins of Mycobacterium vanbaaleniiPYR-1
grown on pyrene are catalase-peroxidase, putative monooxygenase,
dioxygenase small subunit, and small subunit of naphthalene
induced dioxygenase and aldehyde dehydrogenase. Main
while carbohydrate metabolism related proteins are enolase,
6-phosphogluconate dehydrogenase, indol-3-glycerol phosphate
synthase and fumarase[121].Several Mycobacterium spp. having
multiple dioxygenase [122-124].The genes designated mid A3B3
encoding the subunits of terminal dioxygenase detected enzyme
ofMycobacterium vanbaalenii PYR-1 showed a close similarities
to PAH-ring hydroxylating dioxydenases from Mycobacterium
and Rhodococcus spp. but has a highest similarity to a-subunit of
NocardioidesKP7 fumarase [82].

The NahAc gene was detected in 13 Gram-negative
isolates and sequence of Nah Ac-like genes were obtained from
Pseudomonas brenneri, Enterobacter, Pseudomonas entomophila,
Pseudomonas koreensis and Stenotrophomonas strains[125].

Four aromatic ring cleavage dioxygenase genes: Phd F, Phd
I, Pea G and Pca H critical to pyrene biodegradation were detected
in Mycobacterium gilvum PYR-GCK[100].

Microbacterium BPW,Novosphingobium PCY ,Ralstonia
BPH,A4lcaligenes SSKIB and Achromobacter SSK4 were isolated
from mangrove sediment.These strains degrade more than 50%
of 100 ugml'of phenanthracene within 2 weeks. Strains PCY and
BPW degrade 100% pyrene. The presence of a- subunit of pyrene
dioxygenase gene (nidA) in Ph/pyrene degrading ability[126].

In Korea, sediment of U involved San Bay, a marine
bacterium  Novosphingobium  pentaromativorans sp. US6-
Iwas able to degrade PAHs. Various enzymes including
PAH ring hydroxylating dioxygenase o- subunit (RHD o),
4-hydoxybenzoate3-monooxygenase and salicylaldehyde
dehydrogenase were associated with PAHs degradation.

Strain US6-1 degrade PAHs via a metabolic route initiated
by RHDa and that degradation occurred via salicylate pathway
or phatholate pathway. Both of them inter TCA cycle and were
mineralized to CO, and H O[127-129].

A strategy based on selection of Mycobacterium vanbaalenii
PYR-1 mutant (6GII) that degrades HMW-PAHs but not LMW-
PAHs. This mutant was defective inPdoA2 gene encoding

an aromatic Ring Hydroxylating Oxygenase [RHO] enzyme.
Mutant (6GII) had lower rate of fluorine, anthracene and pyrene
degradation[130].Hydrocarbon catabolic genes from 9 different
locations around Syowa station, Antarctica have been determined.
PAH-ring-hydroxylating dioxygenase coding genes from Gram
+ve and Gm —ve bacteria were detected.

Benzo[a]pyrene metabolism involved two transcripts that
encode a putative Dsz A/ NtaA like monooxygenase and NifH-
like reductase respectively [111].

RHD genes in clone libraries of Gram +ve were releated to
I) nid A3 of Mycobacterium Py146, 1) Pdo A of Terrabacterium
HH4, 1IT) Mid A of Diaphorobacter KOTLB and 1V) Pdo A2 of
Mpycobacterium CH-2. While that of Gram —Ve, RHD geneswere
related to I) Naphthalene dioxygenase of Burkholderia glathei
1) Phn Ac of Burkholderia satisoli and 111) RHD a- subunit of
uncultured bacterium [131].

From costal environment a close toBurkholderia fungorum
and Mycobacterium gilvum had mid A, mid A3, Pdo A2 and PCaH
genes [132].

The ring-hydroxylating dioxygenase RHDase coding for
RHDases and 1-hydroxy 2- naphthoate dioxygenase 1H2Dase
genes coding for 1H2Dase enzymes play importantroles in
decomposing the intermediates of PAHs which can be separated
from Arthrobacter sp. SAO, and have the capacity of degrading
phenanthrene [133].Liang et al., (2019 a, b) [134,135] used for
first time gene - targeted metagenomics to investigate the diversity
of PAH- degrading bacterial communities in oil field soils and
mangrove sediments. A PAH hydratase - aldolase - encoding gene
Pah E was a superior biomarker for PAH - degrading bacteria
instead of Pah Ac which encoded the alfa - subunit of PAH ring
-hydroxylating dioxygenase as functional marker gene.

Bacterial degradation pathways of PAHs

Biodegradation of pollutant involves series of steps
using different enzymes [65]. Hydrocarbons can selectively be
metabolized by individual strain of microorganism or consortium
of microbial strains belong to either the same or different genera
[64,90]However, consortium have been proved to be more
efficient than individual cultures for metabolizing or biodegrading
pollutants [136-139].

Initial oxidative attack followed by ring cleavage of benzene
ring is the key step in degradation of aromatics and polycyclic
aromatic hydrocarbons (PAHs) which normally involves diol
formation followed by ring cleavage and formation of dicarboxylic
acid[140].

First step in the microbial degradation of PAHs is oxidation
catalyzed by monooxygenase or dioxygenase[141], which
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introduces atom of oxygen at two carbon atoms of benzene
ring resulted in the formation of cis-dihydrodiol[142,143].
Aerobic catabolic pathway involves a wide variety of peripheral
degradation pathways whichtransform PAHs into small number of
intermediates that enter the Tricarboxylic Acid (TCA) cycle[144].

Synthesis of cell biomass formed from central precursor
metabolites(Succinate, Acetylco A, Pyruvate,and Gluconeogenesis)
which resulted in synthesis of sugars and growth [116].

The most common way of initial oxidation is formation a
diol, followed by ring cleavage and formation of dicarboxylic
acid [143]and formation of Cis-dihydrodiols by incorporation of
both oxygen atoms of an oxygen molecule and then formation
of catecols. Ortho- or meta-cleavage pathway lead to formation
of central intermediates (e.g.: Protocatechuates and caticols with
further steps converted to TCA cycle intermediates[65].Anaerobic
degradation is more recent as compared to aerobic degradation
[145].This is due to less information is available about the genes
and enzymes involved in these pathways[146].

Naphthalene degradation pathways:-

Naphthalene has low water solubility and high solid-liquid
distribution ratio [147].Salicylic acid is an intermediate compound
formed in microbial pathway of naphthalene degradation as shown
in Figure 2[148]by Pseudomonas putida.
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Figure 2: Proposed pathway for the degradation of naphthalene by
Pseudomonas putida [148].

Streptomyces griseus catalyze the biotransformation of
naphthalene to 4-hydroxy-Itetralone in good yield, 2-methyl-1,
4-naphoquinone and 2-methyl-4-hydroxy-1 tetralone as indicated
in Figure 3 [149].
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Figure 3: Proposed pathway for the degradation of naphthalene by
Streptomyces griseus [149].

Degradation of naphthalene starts through the multi-
component enzyme naphthalene dioxygenase, which converts
naphthalene to Cis-naphthalene dihydrodiol. This diol is
transformed to 1, 2-dihydroxynaphthalene via the enzyme Cis-
dihydrodiol dehydrogenase. At this point two pathways are
possible Figure 4.The ring fission of 1, 2-dihydroxynaphthalene
leads to the formation of O-phthalic pathway) which is
subsequently converted to intermediates enter the Krebs Cycle
(TCA) or the formation of salicylates (Salicylic pathway) and also
enter TCA cycle [150,151].In the second pathway, 1, 2-dihydroxy
naphthalene is converted to salicylate which is either transformed
to caticol or gentisate (salicylic pathway). The plasmid possess
degradative genes have been detected in several bacterial species
including the plasmid NAH7 of Pseudomonas putida strain G
[152]and that of strain AkS and plasmid of Gordonia sp. strain
CC-NAPH129-6[153].Hydroxy-phthalic acid is an intermediate
arising after O-phthalic have been identified in Pseudomonas
aeruginosa but not found in M. radiotolerans O-phthalic pathway
have been proven in many bacteria including Pseudomonas
sp.[154],Bacillus fusiformis [155].Bacillus thermoleovorans [156]
and Geobacillus sp.[157].The phthalic pathway also reported
for Pseudomonas sp. [154]and Arthrobactersp.[158]. Therefore
information of bacterial degradation of naphthalene has been used
to understand and predict pathways in the degradation of three or
more ring PAHs [159,160].The proposed pathway of degradation
Naphthelene by Pseudomonassp. CZ2 and CZ5 can be shown in
Figure 5[161]. GC/MS analysisby Abo-State et.al.,(2018)[69]
revealed that Bordetella aviumMAM-P22 degraded Naphthalene
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to six intermediate compounds , these compounds were 1,2- benzene dicarboxylic acid, Butyl - 2,4- dimethyl -2 - nitro - 4- Pentenoate,
1- Nonen- 3 - ol, Eicosane Nonacosane as indicated in Figure 6 [69].
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Figure 4: Naphthalene biochemical biodegradation pathways. (a) Phthalic pathway (b) Salicylate pathway[150,151]. Discontinuous
arrows show molecules identified by Gas Chromatography (GC) analysis.
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Figure 5: Proposed pathway for the degradation of naphthalene by strains Pseudomonas sp. CZ2 and CZ5. 1, Naphthalene dioxygenase;
II, catechol 1, 2-dioxygenase; 111, catechol 2, 3-dioxygenase. CZ2, Pseudomonas sp. CZ2; CZ5, Pseudomonas sp. CZ5 [161].
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Figure 6: Proposed pathway of Naphthalene by Bordetella avium MAM-P22[69].

Phenanthrene degradation pathways

Bacterial degradation of phenanthracene is initiated by 3, 4-dioxygenase to give cis-3, 4- dihydroxy 3,4- dihydrophanthrene,
which undergoes enzymatic dehydrogenation to 3,4- dihyroxyphenanthrene)[122,158].

The proposed phenanthrene degradation pathway [162]by managrove enriched bacteria consortium was indicated in Figure 7.This
pathway followed the phthalic pathway.
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Shingomonassp. GY2B can degraded Phenanthrrene efficiently as indicated in Figure 8[163],but it is following the salicylate
route.
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Figure 8: Proposed pathway for the degradation of Phenanthrene by Sphingomonas sp.[163].

Bacteria can oxidise Phenanthrene to cis- 1, 2-dihydroxy-1, 2-dihydrophenanthrene which converts to 1,2-dihydrophenanthrene
when it undergoes enzymatic dehydrogenation. The compounds can be oxidized further to 1-hydroxy-2-naphthoic acid, 2- carboxy
benzaldhyde, O-phthalic acid, and proto-catechuic acid as shown in Figure 9 [164].
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Figure 9: Proposed catabolic pathways of Phenanthrene
by aerobic bacteria. The compounds are 1, Phenanthrene;
2, cis -1,2-dihydroxy- 1,2- dihydrophenanthrene; 3, 1,2-
dihydroxyphenanthrene; 4, 2-[(E)-2- carboxyvinyl]-1-naphthoic
acid; 5, trans-4-(2-hydroxynaph-1-yl)-2- oxobut- 3-enoic
acid; 6, 5,6-benzocoumarin; 7, 2-hydroxy-l-naphthoic acid;
8, naphthalene-1,2-dicarboxylic acid; 9, cis-3,4-dihydroxy-

3,4- dihydrophenanthrene; 10, 3,4-dihydroxyphenanthrene;
11, 1-[(E)-2- carboxyvinyl]-2-naphthoic acid; 12, trans-
4-(1-hydroxynaph-2-yl)-2- oxobut-3-enoic acid; 13,

1-hydroxy-2-naphthoic acid; 14, 7,8- benzocoumarin; 15, 1,2-
dihydroxynaphthalene; 16, 2-hydroxy-2H-chromene- 2-carboxylic
acid; 17; trans-o-hydroxybenzalpyruvic acid; 18, salicylaldehyde;
19, salyclic acid; 20, trans-2-carboxybenzalpyruvic acid; 21,
2-carboxybenzaldehyde; 22, o-phthalic acid; 23, protocatechuic
acid; 24, cis-9,10-dihydroxy-1,2-dihydrophenanthrene; 25, 2,2/-
diphenic acid[164].

4-[1-hydroxy (2-naphthyl)-2-oxobut-3enoic acid] which
was considered an intermediate product of Phenanthrene
biodegradation by Pseudomonassp.BZ-3.strain BZ-3 initiates its
attack on Phenanthrene by deoxygenating at C-3 and C-4 position
to produce cis-3, 4 dihydrodiol. Which converted to salicylic acid
pathway as indicated in Figure 10 [165].
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Figure 10: A proposed pathway for the degradation of
Phenanthrene by Pseudomonas sp. BZ-3[165].

Phenanthrene degradation by Pseudomonas
mendocinarevealed that high level accumulation of the (1H2N)
was observed[166].The 2-naphthol (decarboxylated product) of
2HINA was detected as minor metabolite in the degradation of
Phenanthrene by Staphylococcus sp. Strain PN/Y[167].Which was
further metabolized by unique meta-cleavage dioxygenase, leading
to TCA intermediates [168].

Figure 11 indicated that Phenanthrene is initial transformed

to cis-dihydro- diol by PAH dioxygenase (a multi
component of dioxygenase enzyme system); dihydrodiol
dehydrogenase converts dihydrodiol to caticol and then

caticol is degraded into aldehyde or acids by 2, 3 dioxygenase
[150],as shown by aerobic bacteria. Pagnot et.al,(2007
)[169] isolated and characterized the gene cluster involved in
Phenanthrene degradation by 3, 4 Phenanthrene dioxygenase
and meta-cleavage. A high branched metabolic pathways of
Phenanthrene biodegradation by Mycobacterium aromativorans
strain JSI9b1T including deoxygenation on C-1,2 and C3.,4 and
C-9,10 position and ring opening via both ortho- and meta cleavage
[170,171].Dimethylphthalate formation proved that Psudomonas
sp.USTB-RU degraded phenanthrene via protocatechuate pathway,
while Stenotrophomonas maltophilia C6 degraded Phenanthrene
via protocatechuate and salicylate pathway [172].
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respectively.

Benzo|a] anthracene degradation pathways:

Initial enzymatic oxidation of aromatic ring system of
B-[a]-anthracene may occur at various locations on the molecule,
including 1,2 or 3,4-carbon positions, an angular Kata-type
initial deoxygenation, via the 9,10- or 10, 11- carbon positions a
linear kata-type initial deoxygenation, or via the K-region at 5,6-
carbon position as indicated in Figurel2.Metabolites from the
biotransformation of Benzo[a]anthracene (B[a]A) by bacteria have
identified from only six organisms (i) Shingobium yanoikuyae
mutant strain B8/36. Initial step of B[a] anthracene was oxidation
to produce Benzo[a]anthracene 7, 12 dione, in which further
oxidation and ring fission transformed to indo-5-aldhyde and
benzene ethanol and number of acids, alchols and esters[173].The
two proposed pathways for the parent strain MAM-62 and gamma
induced mutant strain MAM-62(4) revealed that the parent and
mutant are different in some of their metabolites as summarized in
Table 3 and Figures13, 14 [92].
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Figure 12: Pathways proposed for the biotransformation of
Benz[a]anthracene by SphingobiumKK22. Metabolites in brackets
were not identified in the culture medium [173].
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R.T MAM-62 Formula MAM-62(4) Formula
12.272 Hexanoic acid C6H1202 Hexanoic acid C6H1202
15.166 Hepatanoic acid C7H1402 Heptanoic acid C7H1402
16.184 Benzeneethanol C8H100 - -
16.289 Hexanoic acid,2- ethyl C8H1602 Hexanoic acid, 2-ethyl C8H1602
17.553 - - N-1-(2-chloro-2- ethylbutylidene)-T- butylamine C,H,CIN
18.276 Octanoic acid C8H1602 Octanoic acid C8H1602
19.574 - - Propanamide, N-1(1,1 dimethyl)2,2-dimethyl C,H ,NO
21.084 Nonanoic acid CoH1802 Nonanoic acid CoH1802
29.380 - - [-Pheylethyl butyrate C12H1602
31.348 - - 2,2-Dimethyl-N- phenethyl- propionamide CI3HI9NO
31.752 - - Butanoic acid, 3- methyl,2-phenylethyl ester C13H1802
33.841 Indol-5-aldhyde C,H,NO Indol-5-aldhyde C,H,No
36.666 n-Hexadecanoic acid C16H3202 Hexadecanoic acid C16H3202
43.383 - - 4.4,8-trimthylnon-5- enal C12H220
47.992 Benz(a)anthracene 7,12 dione C18H1002 Benz(a)anthracene7,12- dione C18H100
57.368 - - BSitosterol C29H500
61.832 b-Sitosterol acetate C29H48 b-Sitosterol acetate C29H48

Table 3: Intermediates determined by GC-MS analysis of benzo-a- anthracene degradation by B. amyloliquefaciens MAM-62 and its
mutant MAM-62(4) after 24 hours incubation [92].

Pyrene degradation pathways:

Mycobacterium AP1 grew with pyrene as sole carbon and energy source. This strain initiates its attack on pyrene by either
monooxygenase or dioxygenase at its C4, C5 positions to give Trans - or cis-4, 5 dihydroxy-4, 5- dihydropyrene. Dehydrogenation
of the latter, ortho cleavage of the resulting diol to form phenanthrene 4, 5-dicarboxylic acid and the subsequent decarboxylation to
phenanthrene 4-carboxylic acid, the latter with further degradation via phthalate pathway continue to TCA cycle A metabolite (6,
6-dihydroxy-2, 2-biphenyl dicarboxylic acid indicated a new branch in the pathway [174]as indicated in Figure 15.
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isolated. Dotted arrows indicate two or more successive reactions, [174].

The major pathways for the metabolism of Phenanthrene and pyrene by another Mycobacterium sp. strain vanbaalenii PYR-1
were initiated by oxidation at the K-regions [174]. Phenanthrene 9, 10 and pyrene-4, 5 di-hydrodiols were metabolized via transient
catechol to the ring fission products, 2, 2-diphenic acid and 4, 5-dicarboxyphenanthrene respectively[122].Also another Mycobacterium
sp. strain KMS can grow on pyrene. Various key metabolites including pyrene-4, 5-dione, cis-4, 5-pyrene-dihydrol, phenanthrene-4,
5- dicarboxylic acid and 4- Phenanthroic acid [123].The same bacterial strain PYR-1 was able to utilize pyrene as sole carbon and
energy source and produces 7 metabolites as indicated in Figure 16. These metabolites including four ring metabolities (mono-hydroxy
pyrenes and three different di-hydroxy pyrene) and three-ring metabolites (dihydroxyphenanthrene, 4-phenanthrene-carboxylic acid and
4- phenanthrol), of which more 4- ring metabolites accumulated compared with 3-ring metabolites [175]as indicated in Figurel6.
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Figure 16: Proposed degradation pathways of Pyrene by MycobacteruimA1-PYR. An asterisk indicates that the position of the substitutes
was hypothesized. A solid arrow indicates a single reaction and a broken arrow represents two or more transformation steps. COOH
-carboxyl group, OH - hydroxyl group, [175].
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As shown in Figures (17-19), the initial step in pyrene degradation pathway was the oxidation of K region by dioxygenase to form
cis-4, 5- pyrene-dihydrol. When 3, 4- di-hydroxy Phenanthrene is formed it enters the Phenanthrene degradation pathway [159,176,177].
One of the main metabolites 4-hydroxy-Phenanthrene was transformed into naphthol and 1, 2- dihydroxy- naphthalene which was
further degraded through salicylic acid pathway and phatholic acid pathway separately[178].
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Figure 18: Proposed pathway for the degradation of pyrene by Mycobacterium flavescens [176].
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Figure 19: Elucidation of Pyrene degradation pathway in Pseudomonas-BP10,[177].

Abo-State et.al.,(2014)[91] proposed pathways of pyrene degradation by the parent strain Bacillus amyloliquefaciensM AM-62
and its gamma radiation induce[d mutant MAM-62 (4) as summarized in Table 4and Figure 20 revealed that none of the metabolites
formed by the mutant strain and also none of the metabolites formed by the mutant have been recorded by the parent Bacillusstrain.
Pyrene by successive oxidation and ring fission produces benzene ethanol and 2, 4, 6 cycloheptatriene-1-one and acids by the parent
strain while it produces butonic acid, 3-methyle 2-phenyl ethyl ester and methyl-2, 3-di-O-acetyl-B-D-xylopyranoside by the mutant
MAM-62 (4)[91].

R.T MAM-62 Formula MAM-62(4) Formula
16.176 Benzene ethanol C8H100 - -
16.791 Hexano¥c acid 3,5,5’- CoH 802 ) )
trimethyl
17.336 2.,4,6-cycloheptatri- iene-1-one CHO - -
18.252 - - Ethanol,2-(2-but- oxyethoxy)- CgH1803
18.853 ) ) Cyclopropane,z-(l,lj dimethyl-2- pentenyl)1,1- C1oH2
diemthyl
22.403 - - Methyl2,3-di-o-acethyl- B-D-xylopyranoside C10H1607
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31713 ) ) Butanoic acid-3-methyl- C13H1802
-2phenyl ethyl ester

32.468 - - Pentachlorophenol CHCLO

32.566 Tetradecanoic acid C14H2802 - -

Table 4: Intermediates determined by GC-MS analysis of pyrene degradation by B. amyloliquefaciens MAM-62 and its mutant
MAM-62(4) after 24 hours incubation [91].
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Figure 20: Proposed pathway of of pyrene degradation by B. amyloliquefaciensMAM-62 and MAM-62(4)[91].

The role of mononuclear iron in dihydroxylation reaction for pyrene have been indicated in Figure 21 [179].In case of pyrene
degradation pathway by Pseudomonas stutezeri CECT930, it produces 1-hydroxy-2-naphthoic acid, phthalic acid and cinnamic acid
as shown in Figure 22 [180]. Main while, the degradative pyrene proposed pathway by Bacillus altitudinis MAM-8 identified byl6 S
rRNA reveled the formation of the following metabolites 1-[(hexadeulerio)phenyl] naphthalene; trans-4, 4-di methyoxy -beta methyl
chalcone, phthalic acid monocyclohexyl ester, phatholic acid monobutyl ester, dimethoxybenzyl-ide neacetone and phathalic anhydride.
Abo-State et.al., (2017) [67] found that,the previous metabolites indicated that pyrene degradation by Bacillus altitudinis MAM-8
followed the phthalic pathway as indicated in Figure 23 [67]. In another study, Abo-State et.al.,(2018a)[68]proposed that pathway
of pyrene by the isolated strain from petroleum contaminated soil of Suez Canal, Egypt and identified by16S rRNA as Pseudomonas
panipatensis MAM-P39 with accession number MF150314b produced 14 intermediates. These metabolites including 3-methyl penta-1,
4- diene-3-ol; 3-methyl-2-butenoic acid, 3-methyl-but-2-enyl ester; 3 hexanone; 3-methyl-2- butenoic acid, 2-pentyl ester and benzene,
(3,3- dimethyl-4- pentyl- as shown in Figure 24 [68].Not only single bacterial isolates or strains were able to degrade pyrene, but also
mangrove enriched bacterial consortium. It is well known that consortium having a number of different bacterial collection owing a
battery of degradative enzymes more efficient than single bacterial strain. The proposed pathway was indicated in Figure 25 [162].
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Figure 21: A feasible pathway of dihydroxylation reaction catalyzed by R-NDO in strain ustb-1, the Figure displays that the
resting R-NDOhas a mononuclear iron in ferrous status and an oxidized Rieske [2Fe-2S] center in the active site. At first, one ferric
ion in Rieske [2Fe-2S] center is reduced by an external electron from NADH to form a fully reduced R-NDO. Following the binding
with the substrate, the dioxygen molecule is activated by the two electrons derived from the mononuclear iron and the reduced Rieske
[2Fe-2S] center.Subsequently, the binary complex will quickly react with the carbon—carbon double bond of pyrene at C4-C5 positions
to form a Fe-O2-pyrene ternary complex which is a promising intermediate in the formation process of the product. Then a second
external electron is used to reduce the ferric ion in the ternary complex. Finally, a proton is introduced to the complex, and then the
dihydroxylation product was released. Simultaneously, the mononuclear iron and Rieske [2Fe-2S] center recover the initial states and
are ready for the next cycle of the reaction [179].
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Figure 22: Proposed metabolic pathway of pyrene by Pseudomonas stutzeri CECT 930 [180].
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Figure23: Proposed metabolic pathway of pyrene by Bacillus altitudinis MAM-P8[67].
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Figure24: Proposed metabolic pathway of pyrene by Pseudomonas panipatensis MAM-P39 [68]1 Ethanone,1-(3-buty1-2-hydroxy-5-
methylphenyl);2, (1-phenylvinyl) benzene;3, 2,6-di-tert-Butyl-para benzoquinone; 4, Benzene, (3,3-dimethyl-4-pentenyl); 5,2-xylene;
6,isobutyric anhydrid;7 isopropyl (2e)-2-butenoate; 8,3-Hexanone;9, 3- Methylpenta-1,4-diene-3-ol; 10,Farnesol; 11, Octadecanoic
acid; 12, 2,6-Dimethyl-8-oxoocta-2,6-dienoic acid, methyl ester; 13, 3-Methyl-2-butenoic acid, 2-pentyl ester; 14, 3-Methyl-2- butenoic
acid, 3-methylbut-2-enyl ester.
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Benzo [a] Pyrene degradation pathways

Few researches have been conducted on HMW-PAHs
especially five fussed rings like benzo [a] pyrene. As it is well
known that as the number of fussed rings increased, the ability of

bacteria to degrade HMW - PAHs decreased. One of the bacterial

sp. (Mycobacterium vanbaalenii PYR-1) was able to degrade Benzo
[a] pyrene as indicated in Figure 26[181].However, O-methylation
of benzo [a] pyrene as indicated by Zeng et al., (2013)[182] isthe
key of the proposed pathway (Figure 27), the degradation was
conducted by two steps.

I) removal of 6 - benzo - [a] pyrenyl acetate to form
methoxybenzo - [a] pyrene and

II) Transformation of the tree quinones into dimethoxy
benzo [a] pyrene.
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Figure 26: Proposed pathway for the degradation of benzo[a]

Pyrene by M. vanbaalenii PYR-1. Compounds in brackets are
hypothetical intermediates [181].
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Figure 27: Proposed scheme for the O-methylation mediated pathway involve in successive transformation of benzo[a]Pyrene by
laccase and Mycobacteria. The compounds in brackets are hypothetical intermediates, short dashed line arrows indicate the steps of B[a]
P oxidation by laccase and solid line arrows indicate the steps of successive transformation of the metabolites. The proposed scheme for
transformation was composed of these two steps: (1) removal of 6- benzo[a]pyrenyl acetate (IV) to form methoxybenzo[a]Pyrene (V)
and the three quinones (I, 11, and III), and (2) transformation of the quinones into dimethoxybenzo[a]Pyrene[182].

Treatment of petroleum refinery wastewater (RWP)

Petroleum refinery is an example of an industrial facility which produces a wastewater containing a range of hydrocarbon
compounds[183].1t also uses a lot of process water [184].This Wastewater released from petroleum refineries is characterized by the
presence of large quantity of petroleum products, polycyclic and aromatic hydrocarbons, phenols, metal derivatives, surface active
substances, sulfides, naphthylenic acids and other chemicals[185].Wastewaters that containing PAHs must be treated before discharge
in water bodies to avoid environmental pollution and comply with environmental protection regulations [186].

Heavy metals together with various pollutants can cause numerous hazards to both human and environment even at low
concentration due to gradual accumulation[187].The removal of various toxic substances from wastewater has been a core interest of
many researcher [188].

Wastewater may be treated by physiochemical or biological methods, biological treatment is preferred over physicochemical as
the former is cost effective, efficient and environmentally friendly [22,189].

Crude oil (C8-C35) was removed by 83.70% by the halotolerant Hydrocarbon Utilizing Bacterial Consortium (HUBC) obtained
from on-Shore sites [52].
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Consortium of 15 indigenous bacterial isolates removed
94.84% and 93.75% of total Aliphatic and Aromatic Components
of Crude Oil (OGDCL, Pakistan) after 24 h respectively [190].
However, the biosurfactant producing Pseudomonas aeruginosa
UKMP-14T degraded 75.2% of total petroleum hydrocarbon of
tap is crude oil after 7 days at 40°C,and 150 rpm[191].

Using Pseudomonas panipatensis MAM-P39 for treatment
of the petroleum refinery wastewater produced from Suez oil
processing company degrade 56.28% of organic compounds as
determined by GC/MS. Also, this strain can remove 58.92% of Pb,
64.41% of Cd, 67.87% of as and 99.89 of Hg as verified by ICP
analysis [192].

Treatment of petroleum refinery wastewater by
physicochemical treatment and that treated with Bordetella
bronchisepticaMAM-P14 and Bordetella avium MAM-P22
revealed that degradation of 9- methylene-fluorene were 69.6%,
42.0% and 76.9% respectively and degradation of 4-chloro-alfa-
naphthol were 73.6%, 74.4% and 49.9%. However, treatment by
petroleum refinery wastewater by Bordetella bronchisepticaM AM-
Pl4removed58.5%, 84.8% of vanadium and cadmium respectively.
While Bordetella avium MAM-P22 removed 71.6% and 82.3% of
the same metals [193].
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