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Abstract

Endogenous levels of phytohormones seldom correlate to growth and development. However, in Abies nordmanniana,
a [AA: cytokinin ratio below one corresponds to meristematic activity in the apical meristem, whereas a high ratio about 50

was observed in the elongating stem tissue.
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Introduction

Although auxin has been known to influence cell elongation
since the 1930°es, we are still lacking an understanding of how
auxin participates in maintaining controlled stem elongation
during a growing season. In a changing environment auxin initiates
developmental adjustments of processes such as tropisms, apical
dominance and cell proliferation [1], and auxin synthesis as well
as transport are influenced by irradiance and temperature [2], all
factors that may explain the weak correlations between hormone
levels and plant development as well as unexplainable peaks
[3-5]. Where auxin is able to stimulate cell elongation by itself,
it is the interaction between auxin and cytokinin that is required
to maintain cell division [6]. It is well documented that auxin and
cytokinin regulates each other [7,8], and thereby developmental
processes such as embryogenesis, meristem development and
shoot branching [9]. However, auxin and cytokinin are today still
being evaluated separately regarding stem elongation.

A model system where the development of the apical
meristematic is separated from the process of stem elongation is
idle to probe into the possible regulatory function of the auxin-
cytokinin ratio in determining stem elongation. Such a model does
exist in gymnosperms. In conifers such as spruce, pine and abies, a
none elongating shoot initial is formed within the apical meristem
each year, but the elongation thereof occurs first the flowering
year. A cellular barrier exists between the two types of tissue.
These plants are therefore unique by having separated the process
of forming a shoot initial from the process of stem elongation. In
these species of gymnosperms, top leader elongation is concealed

to at short well-defined time period as bud burst occur in late May,
and elongation of the preformed shoot initial occurs in June/July,
with some variation between years [10].

We have made year round hormone determinations in
several parts of Abies nordmanniana [11]. Although we observed
a dramatic changes in the level of hormones during the growing
season, as well as between different types of tissue, is was not
possible to make firm conclusions to how the observed hormonal
changes might regulate plant development. Furthermore, although
weekly samples were taken in the period of growth, unexplainable
variation in hormone levels was always determined (Figure 1).
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Figure 1: Year-round hormone levels in fluctuations Abies nordmanniana.
The level of IAA (A and B) and cytokinins (C and D) in the apical shoot
initial (A and C) and the middle of the elongating top leader (B and D.
Cytokinin values are the sum of the major cytokinins identified (#-zeatin,
t-zeatin riboside, t-zeatin riboside phosphate and 7-dihydrozeatin). Original
data are presented in [11].
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During areevaluating of the data obtained, itbecame apparent,
that if the auxin-cytokinin ratio was used as a determinator of stem
elongation, the unexplainable hormone fluctuationsdisappeared
(Figure 1 vs Figure 2). The period of fast stem elongation
corresponded to the period where the auxin-cytokinin ratio was
very high, around 60, and as soon as theelongation process began
to ceases, this ratio dropped to below 2. If the same ratio was
determined within theapical bud, where the none-elongating shoot
initial were formed, the ratio stayed below 1 throughout the entire
developmental period, except at the very early phase of initiation,
where a ratio of 2 was observed (Figure 2).
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Figure 2: IAA: Cytokinin ratioin Abies nordmanniana. 1AA:Cytokinin
ratio in the apical shoot initial and the middle of the elongating top leader.
Ratios based on data presented in (Figure 1).

The literature contains only very few data comparing the
level of auxin to cytokinin. However, studies of hormonal levels in
elongating buds in Lupinus [3] are in agreement with the hypothesis
that it is the auxin:cytokinin ratio that determine elongation. A
cytokinin: auxin ratio above 1 was observed in elongating bud
tissue independent of the actual hormone levels, whereas a low ratio
corresponded to a low elongation rate [3]. These authors concluded
that although the data from each hormone may be suggestive they
do not relate completely to observed growth pattern [3].

The ratio of auxin and cytokinin may thus control stem
elongation independent of the actual level of each hormone. The
threshold value seems to be around 1. Cell elongation occurs when
the levels of auxin are above the level of cytokinin making the
auxin: cytokinin ratio exceeding 1 whereas a lower ratio probably
favors meristematic activity.
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