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Editorial 
Autism Spectrum Disorder (ASD) is a group of neurode-

velopmental disorders characterized by repetitive behaviors and 
deficit in social interaction and communication [1]. CDC’s Autism 
and Developmental Disabilities Monitoring (ADDM) Network es-
timated about 1 in 68 children has been identified with Autism 
Spectrum Disorder (ASD). This is more common in boys than 
girls. 

Neural Plasticity in ASD
Synaptic dysfunction is hallmark of ASD [2] leads to 

overgrowth and hyperexcitability in early development [1]. In addition, 
change in excitatory drive and activity pattern along with cascad-
ing change in network function via plasticity mechanisms have 
been reported in ASD patients.

During normal development human cortex undergo dynamic 
change of synaptic connections by synaptic pruning leads to Long 
Term Depression (LTD) [2].  However, these are impaired in ASD. 
The increase in dendritic spines in the cortex of individuals with 
autism, support this hypothesis [3,4].

Importantly, several studies have reported dysregulation of 
LTD across different genetic abnormalities and across different 
brain areas which is reported in several animal models. Santini 
et al 2013 [5] demonstrated transgenic mice that overexpress the 
eukaryotic Translation Initiation Factor 4E (eIF4E), which is regu-
lated by FMRP, similarly show ASD-like behavioral alterations, 
enhanced spine density, enhanced mGluR-LTD in the hippocam-
pus and, in addition, enhanced tetanization-evoked LTD in the stri-
atum. Auerbach et al 2011 [6] reported reduced hippocampal LTD 
in Tsc2+/− mice.  Huber et al 2002 and Verheij et al 1993 [7,8] 
have reported enhanced mGluR5- dependent in the hippocampus 
of Fmr1 knockout mice.

Excitatory/Inhibitory Imbalance
Chattopadhyaya, Cristo 2012 and Hutsler, Zhang 2010 [9,10] 

have discovered structural/functional changes in both glutamater-
gic excitatory and GABAergic inhibitory circuits in postmortem 

studies in individuals with ASD. Toro et al, 2010 [11] proposed 
most emerging hypothesis of alterations in the ratio of excitatory to 
inhibitory cortical activity (E/I imbalance). Such imbalances may 
arise from problems in initial neural circuit formation or mainte-
nance. A study by Rubenstein and Merzenich, 2003 [12] proposed 
increase in ratio of excitation to inhibition in ASD.

There are several factors influencing to synaptic E/I balance 
would include excitatory/inhibitory synapse development, synap-
tic transmission and plasticity, downstream signaling pathways, 
homeostatic synaptic plasticity, and intrinsic neuronal excitability 
[13]. 

Lowering Inhibitory Drive
Several studies in humans and animals reported alterations 

in GABAergic circuits in ASD. A Fatemi, et al. 2002 and Yip et al 
2007 [14,15] have found significant reduction in GAD65/GAD67 
levels in the parietal cortex and cerebellum. However, Fatemi et 
al 2002, Collins et al 2006 and Oblak et al 2010 [14,16,17] have 
reported alterations in GABAA and GABAB receptors in post-
mortem brains of autistic subjects. Additionally, Zikopoulos and 
Barbas 2013 [18] has reported lower numbers of PV+ interneurons 
in the prefrontal cortex, a reduction in its absolute number could 
explain the aberrant GABAergic transmission in autism [19]. Ba-
teup, et al. 2013 [20] showed loss of TSC1, a gene encoding a 
regulator of mTOR signaling in hippocampal cultures resulted in a 
primary decrease of inhibitory synaptic transmission.

Together, these results suggest heterogenous changes in glu-
tamatergic and GABAergic systems in the ASD brain can converge 
upon an overall increased ratio of excitation/inhibition, which can 
manifest in epileptic symptoms, macroscopic changes in brain vol-
ume, and behavioral alterations.

Increase in Excitatory Drive
A study by Gupta, et al. (2015) [21] had demonstrated that 

Glutamate delta1 receptor (GluD1) plays an important role in Au-
tism Spectrum Disorder (ASD) like features in mice model. Dis-
rupting GluD1 resulted into autism like phenotype and molecular 
abnormalities similar to ASD. GluD1 knockout mice show increase 
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in dendritic spine density, frequency of miniature excitatory post 
synaptic currents (mEPSCs) co-localization of PSD95 and synap-
tophysin (a marker of excitatory synapses) in medial prefrontal 
cortex and CA1 region of hippocampus suggest more excitatory 
drive in these brain regions and modulate E/I balance.

One possible biological mechanism connecting the two 
phenotypes is increased spine density, as recent evidence examin-
ing post-mortem ASD human brain tissue revealed an increase in 
spine density on apical dendrites of pyramidal neurons from corti-
cal layer 2 in frontal, temporal and parietal lobes and layer 5 in the 
temporal lobe [10]. Furthermore, these trends are also observed 
in tissue from individuals with diseases co-morbid with autism. 
For instance, the fragile X brain is characterized by macrocephaly, 
elevated spine density and elongated, tortuous spine morphologies 
[22].

The imbalance reported in excitatory and inhibitory circuit 
was normalized by pharmacological, genetic and optogenetic ma-
nipulation of specific excitatory and inhibitory component directly 
caused changes in social and cognitive behavior in mice [23]. 
Therefore, circuit likely to be plastic during postnatal develop-
ment; notably, several neurodevelopmental disorders, including 
ASD manifest during this plasticity period [24,25].

Physiological mechanisms of E/I imbalance in ASDs are 
more intricate. Several studies have shown that the same gene mu-
tation leads to distinct synaptic E/I imbalances in different synaps-
es, cell types, and brain regions at different time points. Therefore, 
studies from various groups highlighted the importance of pursu-
ing detailed and integrative analyses of E/I imbalances in future 
studies of animal models of ASD.
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