

Opinion

An Immune Response to Dietary Antigens; the Sum May Be Greater Than the Parts

Cheryl Burdette^{1*}, Micheal Heck², Kristin Turner³

¹Co-Founder of Dunwoody Labs, Dunwoody, GA, USA

²PhD Student, Dunwoody Labs, Dunwoody, GA, USA

³Clinical Consultant, Dunwoody, GA, USA

***Corresponding author:** Cheryl Burdette, Co-Founder of Dunwoody Labs, Dunwoody, GA, USA. Tel: +16784647172; Email: cherburdette@gmail.com

Citation: Burdette C, Heck M, Turner K (2017) An Immune Response to Dietary Antigens; the Sum May Be Greater Than the Parts. Curr Res Complement Altern Med: CRCAM-113. DOI: 10.29011/CRCAM-113/100013

Received Date: 24 September, 2017; **Accepted Date:** 21 October, 2017; **Published Date:** 30 October, 2017

Opinion

Classically, as we define reactions to antigens, either environmental or foods, we have broken the immune reaction down and divided them based on specific activity. This definition allows us to describe the difference between Type I IgE Mediated Hypersensitivity and Type II IgG mediated activity, and Type III driven by complement activation as well as Type IV Cell-Mediated Hypersensitivity. While these descriptions are not wrong, they are not the whole picture. While it is true IgE and IgG maintain distinct activity, it is also true that IgG, particularly type 1-3 will increase the activity of IgE [1]. Patterns of immune response can be seen for other reasons as well. For example, someone who is in general, more up regulated in terms of IgE reactions, may be low in sIgA. A decrease in sIgA creates a deficiency in a first line of defense, the 85% of the immune system that lines the mucosa. Because of this low level of defense or sIgA, the immune system works to compensate. One way the immune system will compensate is by up regulating IgE activity, relying on a higher level of response in that pathway to overcome short comings created by low sIgA [2]. When we look at various immunoglobulin's responses together, rather than in isolation, we will get a deeper understanding into what is truly happening with immune function (Figure 1).

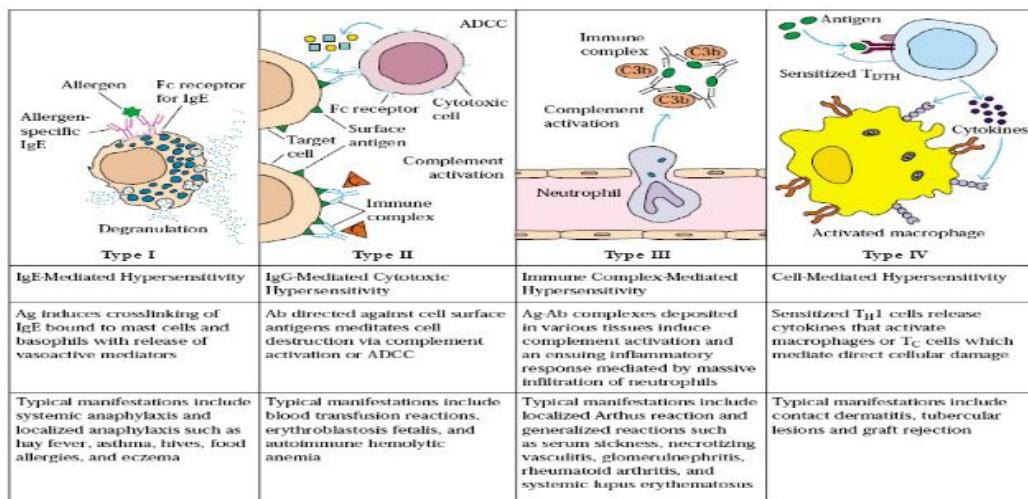
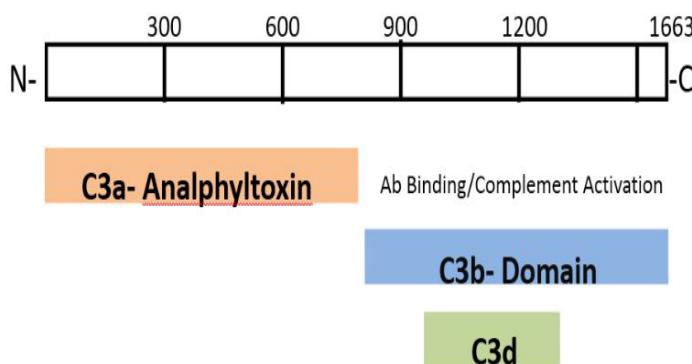



Figure 1: Types of Hypersensitivity.

While IgE and complement are shown as distinct in the above figure, this is not always physiologically the case. Many studies show that complement is involved in IgE driven anaphylaxis and that IgG1 and IgG4 may also play a role. IgG is not limited to the action of delayed sensitivities, but can directly amplify IgE becoming a player in anaphylaxis [3]. Other pathways of anaphylaxis involve complement alone, with no IgE. The Journal of Allergy and Clinical Immunology published in 2009 that complement is involved in the anaphylactic activation of the immune system to peanut, and other studies have shown the same to be true for allergic pathology in general [4]. Further studies have demonstrated IgE-independent anaphylaxis. These pathways involved IgG4, complement, and total IgG [5,6]. When these antibodies are measured contiguously, observation of amplification across immunoglobulin class, points to a result that is likely associated with more aggressive symptoms, increasing clinical value. Complement amplifies IgG reactions, which in turn, may increase the activity of IgE.

Complement and the complement system continue to demonstrate particular importance in allergies and human disease. Complement has 31 proteins and is involved not only in the lysis of bacteria and protecting humans from infectious microorganisms but also in its ability to drive anaphylatoxin which is produced in and responsible for allergies. C3d is a fragment of C3a anaphylatoxin which creates allergies. By measuring C3d you can measure whether C3a anaphylatoxin is being activated in response to various foods (Figure.2).

Figure 2: This figure shows that C3d is a byproduct of activation of C3a, an anaphylatoxin involved in increasing risk of anaphylactic symptoms.

Complement is involved in producing a wheal-and-flare response in the skin, like immediate hypersensitivity responses found when induced by allergy extracts in the skin. Measuring complement helps to isolate allergic triggers that are not mediated by IgE. By measuring complement, the ability to isolate a distinct pathway by which a patient may have anaphylactic potential, is identified. This increases the sensitivity of IgE testing, and reduces false negatives. Complement, when bound to IgG, can increase its potential to increase histamine from 1000 to 10,000-fold [7].

Complement will activate basophils known to release histamine and drive allergic or atopic conditions such as urticaria, angioedema and asthma (Table1).

Lupus	Crohn's Disease	Rheumatoid Arthritis	Ulcerative Colitis
Psoriasis	Cystic Fibrosis	Epilepsy	Gout
Scleroderma	Thyroiditis	Reiter Syndrome	Dermatomyositis
Depression	Food Reactions	Increased CRP	Acute Rheumatic Fever
Typhoid Fever	Sarcoidosis	Traumatic Spinal Cord Injuries	Periarteritisnodosum
Dermatomyositis	Scleroderma	Acute Myocardial Infarction	Ankylosing Spondylitis

Table 1: Other conditions that complement is involved in, but not limited to.

Over the past 30 years, complement proteins have been cloned and sequenced. Complement-mediated tissue destruction occurs as part of the allergic process. By measuring complement we can detect underlying inflammatory mediators that augment the activity of IgG and IgE. Just as complement is measured to help diagnose many conditions, complement production specific to food can be looked at to know which dietary triggers are the most detrimental in relation to certain pathologies (Table 1). Identification of foods that trigger complement, allows for removal of foods, decreasing complement improving outcomes not only in allergies, but many other conditions as well.

In addition to certain IgG antibodies increasing reactivity, IgG4, when in the right ratio, can decrease risk of anaphylaxis. IgG4 increases as a way of developing tolerance to various allergies. Our body does not wish to remain anaphylactic to foods and so our immune system works to overcome the issue. IgG4 has a distinct mechanism of action, very different from subtype's I-III. IgG4 is smaller and has more thiol groups allowing it to easily slot into receptor sites where IgE binds. By doing this it blocks IgE from binding sites, keeping IgE from triggering degranulation or a mast cell or eosinophil resulting in release of histamine. Therapies designed to desensitize allergens, in the form of injections or sub-lingual drops are intended to increase IgG4, not in fact decrease IgE. The mechanism by which desensitization therapies work is to increase IgG4 over IgE, blocking its ability to cause anaphylaxis. By looking at IgG4 distinct from the rest of subtypes of IgG, you will be able to detect if tolerance has been achieved [8].

If IgG4 gets high enough, it can result in other issues. High levels of IgG4 precipitate out into tissue causing structural and histological problems. IgG4 antibodies are known to infiltrate into tissue such as the thyroid, resulting in thyroiditis, the esophagus resulting in eosinophilic esophagitis and the skin resulting in ec-

zema. The ovaries and prostate are also at risk of IgG4 damage as it likes to lodge in reproductive tissue decreasing fertility and hormonal balance [9] (Table 2).

IgG4 Conditions			
Autoimmune Pancreatitis	Salivary gland Disease	Orbital disease, often Complicated by Proptosis	Retroperitoneal Fibrosis
Increased number of Eosinophils / Eosinophilic Esophagitis	Peripheral Eosinophilia	Atopy	Lymphadenopathy
Sclerosing Cholangitis	Mikulicz disease	Sclerosing-sialadenitis	IgG4-related Sub mandibular gland Disease
Lacrimal gland Enlargement	“Idiopathic” retroperitoneal fibrosis	IgG4-Related Thyroid disease	IgG4-Related thyroid disease
Lacrimal gland Enlargement	“Idiopathic” retroperitoneal fibrosis	IgG4-related thyroid disease	IgG4-related thyroid disease
IgG4-related kidney disease	Mimics sarcoidosis in the lung	Hypopituitarism Associated with IgG4-related Hypophysitis	Prostatitis
IgG4-related disease of the ovary	Constrictive pericarditis	Nasopharyngeal disease	Midline-destructive lesion

Table 2: IgG4 Conditions.

References

- Shakoor Z, AlFaifi A, AlAmro B, AlTawil LN, AlOhaly R (2016) Prevalence of IgG-mediated food intolerance among patients with allergic symptoms. *Ann Saudi Med* 36: 386-390.
- Calderon T, Ferrero M, Marino G, Cordoba A, Beltramo D, et al. (2010) Meat-specific IgG and IgA antibodies coexist with IgE antibodies in sera from allergic patients: clinical association and modulation by exclusion diet. *J Biol Regul Homeost Agents* 24: 261-271.
- Bergamaschini L, Santangelo T, Faricciotti A, Ciavarella N, Mannucci PM, et al. (1996) Study of complement-mediated anaphylaxis in humans. The role of IgG sublasses in the complement-activating capacity of immune complexes. *J Immunol* 156: 1256-1261.
- Khodoun M, Strait R, Orekov T, Hogan S, Karasuyama H, et al. (2009) Peanuts can contribute to anaphylactic shock by activating complement. *J Allergy Clin Immunol* 123: 342-351.
- Finkelman FD, Khodoun MV, Strait R (2016) Human IgE-independent systemic anaphylaxis. *J Allergy Clin Immunol* 137: 1674-1680.
- Muñoz-Cano R, Picado C, Valero A, Bartra J (2016) Mechanisms of Anaphylaxis Beyond IgE. *J InvestgAllergolClinImmunol* 26: 73-82
- Dempsey PW, Allison ME, Akkaraju S, Goodnow CC, Fearon DT (1996) C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. *Science* 271: 348-350
- (1996, Feb 1). Study of complement-mediated anaphylaxis in humans. The role of IgG sublasses (IgG and/or IgG4) in the complement-activating capacity of immune complexes. *J Immunol* 156: 1256-61.
- Ebbo M, Grados A, Bernit E, Vely F, Boucraut J, et al. (2012) Pathologies Associated with Serum IgG4 Elevation. *International Journal of Rheumatology* 2012: 1-6.