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Abstract 
The expansion of the world`s elderly population requires the identification of complex mechanisms beyond the continuous 
decline in cellular functions associated with aging and senescence. Both are risk factors that gradually impede health homeostasis 
and promote the incidence of cardiovascular, metabolic, neurodegenerative, and immune diseases in elderly people. The review 
aims to update and discuss the role of mitochondrial dysfunction in cardiovascular aging and senescence. The focus is targeted 
on molecular mechanisms beyond mitochondrial dysfunction occurring in (i) cardiac aging, (ii) vasculature aging, and (iii) 
cellular senescence. In line with the ongoing basic cardiovascular research, the review uncovers the promising strategies directed 
towards alleviating dysregulated and interrelated pathways of mitochondrial dysfunction by (iv) anti-aging therapies, and (v) anti-
senescence treatments. Ultimately, the open questions and the perspectives of this domain (vi) are underlined. One can safely state 
that the recent translation of preclinical endeavors and interventions into clinical conduits helps to prevent/delay cardiovascular 
mitochondrial-dysfunction, and is of benefit to aged people.

Keywords: Cardiomyocytes; Blood vessels; Anti-aging therapy; 
Anti-senescence therapy

Introduction
Biological aging starts with the intracellular occurrence of molecular 
damages, followed by their gradual and irreversible accumulation. 
These changes result in the progressive loss of normal cellular 
functions, dysfunction of intracellular signaling, and altered 
intercellular communication. Next, such defects expand to the 
systemic decline of tissues and organs’ operation and ultimately 
trigger organismal death. Aging is not a disease, but it significantly 
increases the susceptibility to the occurrence of a variety of age-
related diseases, including cardiovascular, neurodegenerative, 
musculoskeletal, and metabolic diseases, macular degeneration, 
cancer, and many other disabilities with a poor prognosis for the 
elderly individuals [1-7]. A series of complex and interlinked 
processes are known as “hallmarks of aging”. These involve (i) 

systemic alterations (such as deregulated nutrient sensing), (ii) 
specific cellular hallmarks (cellular senescence, exhaustion of 
stem cells, and altered intercellular communication), and (iii) 
molecular hallmarks, such as genomic instability, shortening of 
telomeres (repetitive DNA sequences found at the terminal loops 
of linear eukaryotic chromosomes), epigenetic alterations, loss of 
protein homeostasis (“proteostasis”), metabolome adjustments, 
low-grade chronic inflammation, compromised autophagy, and 
mitochondrial dysfunction [4, 8-10]. 

In cardiovascular aging, the decline of mitochondrial function 
(known as “mitochondrial dysfunction”) is characterized by 
reduced ATP generation, impaired oxidative phosphorylation 
(OXPHOS), diminished mitochondrial biogenesis, depletion of 
NAD+, overproduction of mitochondrial reactive oxygen species 
(mROS) correlated with increased oxidative stress, amplified 
mitochondrial DNA (mtDNA) mutation rate, telomere shortening, 
compromised quality control processes, and inefficient mitophagy. 
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These traits of mitochondrial dysfunction are implied in the 
development and progress of cellular dysfunction [4, 11-16]. 

Senescence is a pleiotropic process [17]: acute senescence appears 
to be a normal physiological activity with beneficial roles in 
embryogenesis, tissue remodeling, and wound healing [18, 19], 
while the chronic senescence has detrimental effects because the 
gradual accumulation of senescent cells during aging and age-
related diseases leads to progressive tissular dysfunction [18, 20]. 
Here, the focus is on chronic age-related senescence (referred to 
further as “cellular senescence”). This is an adaptative response 
of cells facing the damage of severe stresses, leading to the 
irreversible loss of their proliferative potential and the long-term 
and stable cell cycle arrest. Meanwhile, the up-regulation of the 
anti-apoptotic pathways imposes cells to remain metabolically 
active [21]. Senescence is not identical to aging, as cells may 
become senescent irrespective of organismal age [22]. It should 
not be confused with quiescence, a condition of reversible 
proliferative arrest [23, 24]. The cell-cycle arrest pathways are 
different: activation of cell death inductor p53 and mammalian 
Target of Rapamycin (mTOR) causes cellular senescence, whereas 
p53 activation and mTOR inhibition trigger quiescence [25, 26]. 
Moreover, dependent on the diversity of cells and stressors, the 
attainment of cell senescence takes longer compared with some 
other cellular activities (replication, differentiation, apoptosis, or 
necrosis) [12]. The biomarkers of cellular senescence comprise 
alteration of morphology (cells become flat and enlarged), 
augmented reactivity of senescence-associated β-galactosidase, 
expression of Senescence-Associated Secretory Phenotype 
(SASP, a collection of factors with pro-inflammatory, proteolytic, 
extracellular matrix-degrading, complement-activating and pro-
coagulating roles), intensified activity of Cyclin-Dependent Kinase 
(CDK) inhibitors, and modifications of chromatin and mtDNA [2, 
18, 22, 27-31]. 

Mitochondrial dysfunction plays a key role in the initiation and 
progression of cellular senescence. The main promoters are 
excessive mROS generation, the conversion of metabolism 
from OXPHOS to glycolysis, impaired ATP generation, reduced 
mitochondrial membrane potential (ΔΨm), diminished NAD+/
NADH ratio, and antioxidant capability. Moreover, released from 
the ER stores, Ca2+ triggers mitochondria overload and opening of 
the mitochondrial permeability transition pores (mPTP) located at 
the inner mitochondrial membrane (IMM). In cellular senescence, 
the dysfunctional mitochondria accumulate and are not efficiently 
cleared from the affected cells [13]. 

This review surveys and updates the molecular mechanisms of 
mitochondrial dysfunction in (i) cardiac aging, (ii) blood vessel 
aging, (iii) cardiovascular senescence, (iv) the current anti-
aging, and (v) anti-senescence therapies targeting cardiovascular 
mitochondrial dysfunction. The open questions and the perspectives 
of this age-related essential topic conclude the review.

Mitochondrial dysfunction in cardiac aging

Mitochondria are abundant in the cardiomyocytes. They occupy 

30-40% of the cell volume and generate ~90% of the ATP 
necessary for the normal contractile function [24, 32]. Noteworthy, 
cardiomyocytes contain spatially and morphologically distinct 
mitochondrial subpopulations with specific tasks: (i) the 
subsarcolemmal mitochondria (SSL, 0.4-3.0 μm in length) provide 
the ATP used in the transport of electrolytes and metabolites across 
the sarcolemma, (ii) the interfibrillar mitochondria (IF, ~1.5-2.0 
μm in length) supply the ATP used in contraction, and (iii) the 
perinuclear mitochondria (PN, smaller in size, compared to SSL 
and IF) are relatively mobile during organelle`s fusion/fission 
dynamics [33-35].

Dysfunctional mitochondria are recognized as central contributors 
to heart aging, a process that harms the IF electron transport chain 
(ETC) [36]. Interestingly, an early event linked to cardiac aging is 
the acute ER stress (sustained by calpain I activation) that occurs 
earlier than mitochondrial dysfunction [35]. ER stress affects also 
the mitochondria-endoplasmic reticulum (ER) interacting zones 
(MERCs or Mitochondria Associated Membranes, MAMs); these 
function as signaling centers implied in lipid and calcium transfer, 
mitochondrial dynamics, and autophagy associated with the aging 
process [37-39].

The prominent features of the aging heart are hypertrophy, diastolic 
dysfunction, augmented fibrosis of the myocardium, and valvular 
calcification [32]. Recent knowledge highlights the main triggers 
of mitochondrial dysfunction in cardiac aging:

(i) Of the utmost importance is oxidative stress, defined as an 
imbalance between excessive ROS production and reduced 
scavenging capacity [16, 32, 40, 41]. Chemically, ROS are the 
superoxide anions (O2

•−), hydrogen peroxide (H2O2), and hydroxyl 
radicals (•OH). mROS are generated as by-products of OXPHOS 
and are viewed nowadays not only as inductors of oxidative stress 
but also as signaling molecules [42]. In physiological conditions, 
the low/moderate ROS levels contribute to cell homeostasis, as 
ROS are cleared by the cell`s antioxidant defense scavengers, 
including mitochondrial superoxide dismutase (SOD2 or Mn-
SOD), peroxiredoxin 3, glutathione peroxidase (located in the 
cytosol, mitochondria, and peroxysomes), and the peroxisomal 
catalase. Excess of ROS levels suppresses the scavengers` activity, 
causees oxidative damage to mtDNA, proteins, and lipids, and 
ultimately activates the apoptotic pathways that induce cell death 
[1, 36, 41].

The abnormal accumulation of dicarbonyls in the aged myocardium 
(caused by the reduced efficiency of the glyoxalase detoxification 
pathway) was reported recently as an inductor of oxidative stress. 
The dicarbonyls are α-oxaldehydes (methylglyoxal, glyoxal, 
3-deoxyglucosone), intermediates of glycolysis, gluconeogenesis, 
and lipid metabolism that favor ROS generation [43]. Moreover, 
excess dicarbonyls alter the formation and assembly of FoF1-ATP 
synthase monomers, which conduct to aberrant cristae formation, 
less efficient OXPHOS, and augmented energy dissipation 
through the opening of the mPTP. The glycation in the 5 subunits 
of FoF1-ATP synthase favors the opening of the mPTP [41,44]. 
Notable, the partial mPTP opening releases mtROS and Ca2+ 
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that activate nucleus-associated protective mechanisms such as 
the nuclear transcription factor E2-related factor (Nrf2) (with 
antioxidant function) and PGC-1α (implied in mitochondrial 
biogenesis). When mPTP opening is prolonged, the cytoplasm 
flows into mitochondria and causes extensive swelling of the 
IMM; subsequently, the outer mitochondrial membrane (OMM) 
becomes damaged, cytochrome c is released, and cell apoptosis 
ocurrs. mPTP opening can be normally stopped by the removal 
of dysfunctional mitochondria by mitophagy. In aging conditions, 
two situations may arise: (a) in case of massive mitophagy, the cell 
will be depleted of mitochondria leading to its death [16], and (b) 
in case of full opening of mPTP, the matrix metabolites (OXPHOS 
substrates, mROS, Ca2+, NAD+, and glutathione) will be released 
and an increased “proton (H+) leak” through the mitochondrial inner 
membrane Adenine Nucleotide Transporter 1 will be stimulated 
[45]. In health conditions, a part of protons is pumped from the 
matrix to the mitochondrial intermembrane space, but some leak 
back to the matrix and generate ATP via ATP synthase. In the aged 
heart, the returned protons do not yield ATP, a condition known 
as “proton leak” [45]. The augmented proton leak is considered 
the primary bioenergetic change in aged heart mitochondria 
[46]. This is another example of a pleiotropic process: the mild 
proton leak occurs in the young heart, mimics caloric restriction, 
and confers protection against the damaging effects of ROS and 
oxidative stress, while in the aged heart, the excessive proton leak 
is detrimental, decreasing the respiratory efficiency [3].

(ii) The modification of Zn2+ transporters (in charge of Zn2+ 
distribution among cytosol and intracellular organelles) results 
in mitochondrial Zn2+ overload associated with increased ROS 
production and dysfunction of aged cardiomyocytes [40]. Earlier, 
it has been reported that Zn2+ originates from the lysosomes, after 
permeabilization of their membrane by Ca2+ that entered through 
the Transient Receptor Potential Melastatin 2 (TRPM2) channel; 

subsequently, the released Zn2+ stimulates the mitochondrial 
recruitment of Dynamin-related protein 1 (Drp-1) that triggers the 
aging-associated mitochondrial fission [47]. 

(iii) Another feature of mitochondrial dysfunction consists in 
the low levels of Coenzyme Q10 which transfers electrons from 
complexes I and II to complex III in the electron transport chain 
[48, 49]. 

(iv) The modifications of mTOR complex 1 and 2 signaling 
pathways occur in age-related cardiac dysfunction and heart 
failure [50]. It is known that the mTOR pathway regulates both 
cardiac homeostasis and aging through the adjustment of protein 
synthesis, autophagy, and mitochondrial function [51].

The recent reports bring evidence that mitochondrial dysfunction 
is a common attribute shared by both aged cardiomyocytes and 
blood vessels. The common traits consist in: 

(a) the augmented production of ROS and the altered expression of 
proteins that regulate the redox balance; among the up-regulated 
proteins are the NADPH oxidase 4 (NOX4), the Src homologous-
collagen homolog adaptor (p66Shc), and Arginase II (Arg-II). 
Opposed, are proteins down-regulated by aging, such as the Silent 
Information Regulator 1 (SIRT1), the antioxidant Nrf2, and the 
Nrf2 regulator, Klotho [32], 

(b) the failure of the mitochondrial quality control caused by the 
offset of fission/fusion balance, and by the inefficient mitophagy 
conduct to the diminishment of endogenous antioxidant defenses. 
To compensate for the reduced functionality, mitochondrial 
morphology is affected. The malfunctioning mitochondria split 
by fission (“hyperfission”) to remove the defective fragments 
and generate novel robust mitochondria aiming at the covering of 
energy requirements for growth and division (Figure 1),
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Figure 1: Electron microscopic ultrastructure of cardiomyocyte mitochondria in health (a), in aging: (b) smaller mitochondria generated 
by fission exposing defective cristae, (c) apoptotic mitochondria with a disorganized morphology, and in senescence: (d) fused, elongated 
mitochondria.

Magnifications: (a, c, d)- 54,600x; (b) 36,450x;

(c) other common traits of mitochondrial dysfunction in aged hearts and vasculature are reduced mitochondrial biogenesis, defective 
mitochondrial Ca2+ cycling, and impaired autophagy; the latter is caused by the reduced activation of AMP-activated protein kinase 
(AMPK) and E3 ubiquitin ligase Parkin, along with the involvement of Rho-associated coiled-coil-containing protein kinase (ROCK)1 
and ROCK2 [11, 32, 52, 53], 

(d) the malfunction of telomeres leads to mitochondrial dysfunction by the downregulation of transformation-related protein 53(TRP53)-
dependent of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) and PGC-1β [54, 55],

(e) myocardial and blood vessels aging show activation of the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) 
inflammasome, stimulation of the Toll-like receptor 4 (TLR4), of inflammatory cytokines production, and NF-κB signaling [32]; thus, 
aging is associated with a low-grade, chronic inflammation that augments the local generation of ROS and amplifies the inflammatory 
response [9, 56-59]. The process was coined “inflammaging” by Franceschi et al. in 2000 and now is generally recognized as a risk factor 
for cardiovascular diseases [59,60]. 
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The above-dysregulated and interrelated pathways of mitochondrial 
dysfunction in aged cardiomyocytes and blood vessels [61, 62] are 
accompanied by specific features developed in aged arteries and 
microvasculature (discussed in the next section).

Mitochondrial dysfunction in blood vessels aging
The data so far established that all cellular components within 
the vascular wall of large arteries (aorta), coronary arteries, 
atherosclerotic arteries, and microvasculature (capillaries included) 
are affected by age-related mitochondrial dysfunction. The elastic 
arteries (aorta and carotid artery) remodel in aging their wall; the 
lamellae become partially split and replaced by collagen, and 
the endothelial cells (ECs) lose the angiogenic ability and ECs-
dependent vasodilation (to acetylcholine) [62, 63, 64]. Previously, 
it was demonstrated that in rat-aged aortas, the O2•− reacts with the 
vasorelaxant nitric oxide (NO), forms peroxinitrite and nitrosylates 
mitochondrial manganese superoxide dismutase (MnSOD) [65]. 
Within the aged aorta, the enhanced Interleukin-6 (IL-6) levels 
increase mitochondrial dysfunction, and augment mitophagy and 
Parkin levels; these changes assist atherogenesis development in 
hyperlipidemia [66].

The high incidence of abdominal aortic aneurysm (AAA) in the 
aged population attracted attention to mitochondrial dysfunction`s 
role in this degenerative disease [67]. Recently, Navas-Madroñal 
et al. [68] showed the involvement of harmful mitochondrial 
oxidative stress in AAA and discovered the positive effects of 
mitochondria-targeted tetrapeptide Szeto-Schiller 31 that reduced 
the occurrence and gravity of AAA. Other studies showed that 
thoracic aortic aneurysm modified the vessel proteome both 
quantitatively and qualitatively [69]. 

Within the aged coronaries, mitochondrial dysfunction is promoted 
by acyl-coenzyme A: lysocardiolipin acyltransferase-1 (ALCAT-1) 
involved in cardiolipin remodeling [70]. Additionally, aging is 
associated with coronaries hyperconstriction, an event in which 
dysregulated mitochondrial redox homeostasis and the imbalanced 
fission/fusion dynamics play a role; the consequences consist of 
impaired physiological perfusion and the installment of several 
heart pathologies [71]. Such alterations are intensified by the 
mROS levels exceeding the cell’s antioxidant buffering capacity 
[72]. Advanced aging produces modifications of the bioenergetic 
profile of coronary artery ECs and vascular smooth muscle cells 
(VSMCs) that express in aging lower resting OXPHOS levels, and 
reduced reserve capacity [73]. 

Effects of aging on microvasculature implied in-depth studies 
on coronaries and brain microcirculation. Recently, the group 
of Mengozzi et al. [56] advanced the idea that microvascular 
dysfunction might represent a noticeable marker of aging compared 
to chronological age; this conclusion resulted from the study of 
age-associated mitochondrial and ECs dysfunction correlated with 
the irreversible modification in microvascular wall structure, low-
grade inflammation, and oxidative stress. Furthermore, in ECs, 
the mitochondrial Sirtuin 3 (SIRT3) levels progressively decline 
with aging, the SIRT3-related ECs metabolism is impaired, 

and these modifications conduct in the rarefaction of coronary 
microvasculature [74]. Remarkably, vascular alterations occur 
earlier in individuals at risk for cardiovascular disease development 
[64]. Brain microvasculature restrains in aging a decreased number 
of mitochondria and a reduced efficiency of the remaining ones 
[75, 76]; the latter trait contributes the impaired OXPHOS, lower 
ATP generation, diminished glycolysis, and increased glutamine 
utilization as an energy source [56]. 

Nowadays, it is established that by affecting blood vessels, 
mitochondrial dysfunction has a key role in the morbidity and 
mortality of older individuals [29]. The input of mitochondrial 
dysfunction on cardiovascular senescence is discussed below.

Mitochondrial dysfunction in cardiovascular senescence
In response to aging and stressors, the cardiomyocytes (terminally 
differentiated post-mitotic cells) develop a senescent phenotype 
and accumulate within the myocardium, contributing to the risk 
of age-related cardiovascular pathologies, such as heart failure, 
diastolic dysfunction, myocardial infarction, cardiac arrhythmias, 
and atherosclerosis [24, 77-81].

Cardiomyocyte senescence is induced by various factors: 
mitochondrial dysfunction, oxidative stress, activation of the 
hexosamine biosynthetic pathway, and epigenetic regulation 
[82, 83]. Several processes explain mitochondrial dysfunction 
associated with cardiomyocyte senescence: the oxidative stress 
(counting for 90% of age-related ROS) [26], the overexpression 
of mitochondrial-membrane flavoenzyme Monoamine 
Oxidase-A (MAO-A) (another source for elevated ROS levels), 
downregulation of genes encoding subunits of mitochondrial 
ETC complexes, defects in mitochondrial dynamics and quality 
control [84], and the inefficient removal of damaged mitochondria 
by mitophagy (as a consequence of Parkin-mediated mitophagy 
inhibition by cytosolic p53) [85-89]. To assist the replenishment 
of damaged mitochondrial DNA, extensive mitochondrial fusion 
takes place, resulting in elongated mitochondria (Figure 1); this 
process is coordinated by the mitochondrial fusion proteins: 
Mitofusin 1(Mfn1), Mitofusin 2 (Mfn2), and optic atrophy 1 
(OPA1) [90-92]. The cellular senescence is induced also by the 
clinical doses of chemotherapy that cause cardiotoxicity [93, 94]. 

The hallmarks of cardiomyocyte senescence are genomic 
instability, mitochondrial dysfunction, ER stress, contractile 
dysfunction, hypertrophic growth, β-galactosidase expression, 
and increased production of pro-inflammatory, pro-fibrotic and 
pro-hypertrophic SASP factors [24, 77, 79, 95, 96]. The latter is 
facilitated by minor permeabilization of the OMM (miMOMP) 
that permits the release of mtDNA into the cytosol (via BAX 
and BAK macropores), activates the cyclic GMP–AMP synthase 
(cGAS)–stimulator of interferon genes (STING) pathway, and 
conducts to the increased expression of inflammatory molecules 
and of SASP [97]. The SASP generation in aged cardiomyocytes 
is also stimulated by the length-independent telomere damage that 
activates the classical senescence-inducing pathways p21CIP and 
p16 INK4a [77]. 
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Within the myocardial “microenvironment” and under stress 
conditions, the senescence of resident cardiomyocytes and ECs 
(representing ~60% of heart noncardiomyocytes) is modulated by 
paracrine signaling factors released by these two types of cells: 
(i) the dysfunctional cardiomyocytes secrete angiogenic factors 
implied in the induction of ECs senescence; examples are the 
Vascular Endothelial Growth Factor A (VEGF A), angiopoietin-1, 
Lipoprotein Lipase (LPL, in diabetes), SASP, and extracellular 
vesicles (EV) [26, 98, 99]; (ii) the malfunctioning cardiac ECs 
secrete pro-inflammatory factors, such as Transforming Growth 
Factor- β (TGF-β), Interleukin-6 (IL-6), IL-33, Endothelin-1 
(ET-1), Angiotensin II (Ang II), and EV, recognized as players in 
cardiomyocytes senescence [26, 96]. 

Among the consequences of cardiomyocyte senescence, studies 
uncover the increased risk of ventricular arrhythmias [100], the 
development of cardiomyopathy [101], and telomere dysfunction; 
ATP deficiency, excessive ROS generation, and chronic 
inflammation are potential therapeutic targets to improve the 
associated mitochondrial dysfunction [102]. The senescence of 
cardiac ECs may lead to reduced vasodilation and atrial fibrillation 
associated with the expression of senescence effector pathways, 

p53, and p16 [103]. Aortic stiffness, enhanced inflammation, and 
dysregulated vascular tone have been acknowledged among the 
features of senescent vascular ECs [104].

Senescence disturbs also the VSMCs that show increased 
β-galactosidase expression, short telomeres, up-regulated secretion 
of inflammatory cytokines, and enhanced DNA damage [105]. 
In cardiovascular pathophysiology, accumulation of senescent 
VSMCs increases with age, is regulated by Ang II [106], occurs 
within atherosclerotic plaques, throughout all stages of the disease 
[107], and is implicated in the calcification of old aortas, a process 
associated with the upregulation of transcriptional factor GATA6 
[108]. Furthermore, the senescent VSMCs are involved in the 
activation of pro-ferroptotic signaling, a novel form of regulated 
cell death associated with arterial stiffness [109]; the secreted 
SASP factors contribute to the development of vascular diseases, 
such as atherosclerosis, aneurysm, and hypertension [110].

The knowledge described above allows the selection of the 
common and individual traits of mitochondrial dysfunction in 
cardiovascular aging and senescence. A brief synopsis is included 
in Figure 2.

Figure 2: Mitochondrial dysfunction molecular mechanisms in cardiovascular aging and senescence: the common and the specific 
features.
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The recent preclinical endeavors to alleviate cardiovascular consequences of aging and cellular senescence are discussed in the last part 
of this review.

Current anti-aging therapies targeting cardiovascular mitochondrial dysfunction

Preclinical studies acknowledge that alleviation of mitochondrial dysfunction in cardiovascular aging is produced by several natural 
compounds, antioxidants, peptides, pharmacological agents, and hormones; other recent promising approaches are nanomedicine drugs, 
gene therapy, mitochondrial transfer, and lifestyle changes (Table 1).

Therapeutic approach Targeted mitochondrial dysfunction/Effects References

NATURAL COMPOUNDS
Flavonoids – Quercetin

Abnormal mitochondrial dynamics
↓mitochondrial superoxide

Protects mitochondrial morphology
111-116

Phenols and polyphenols -Resveratrol (3,5,4’- 
trihydroxystilbene) Salvinoic acid D

 AMPK-SIRT1-PGC-1α mitochondrial biogenesis pathway
SIRT1 activation

Sirt1/Sirt3-FoxO pathway activation
mitophagy impediment, mPTP opening prevention restores 

mitochondrial morphology

 115, 117-120

Metformin
↑ autophagy; alleviate aging-associated inflammation
↓ ROS generation; mitochondrial function modulation

offsets aging and extend lifespan
121-123

ANTIOXIDANTS
Coenzyme Q10

MitoQ (Mitoquinone)
Vitamin E

MitoTEMPO (2-(2,2,6,6-Tetramethylpiperidin-1-
oxyl-4-ylamino)-2 -oxoethyl)

triphenylphosphonium chloride monohydrate)

 Antioxidant, mROS scavenger
improves age-related endothelial dysfunction by ↓oxidized LDL, ↑ NO 

production and ↓mitochondrial oxidative stress
↓mROS prevents vascular reactivity alterations

 117, 124-127

 Zn2+ Modulation of cardiomyocyte Zn2+transporters 41

 PEPTIDES
Spermidine (1,8-Diamino-4-azaoctane, N-(3-

Aminopropyl)-1,4-diaminobutane
MOTS-c

 Attenuates mitochondrial dysfunction, ↓IL-6 and Parkin

Restores mitochondrial metabolic imbalance

 66

128

 PHARMACOLOGICAL AGENTS
The SS-31 tetrapeptide (D-Arg-2’,6’-dimethylTyr-

Lys-Phe-NH2) (elamipretide or bendavia)
↓ mitochondrial proton leak & PTP opening, prevents mitochondrial 

proton leak  28, 47, 72

Rapamycin mTOR inhibitor, improves cardiac systolic and diastolic function 129

GENE THERAPY Overexpression of PGC-1α 
SIRT1, TFAM & Parkin 15, 130
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NEUROENDOCRINE HORMONE
Melatonin (N-acetyl-5-methoxytryptamine)

Antioxidant, anti-inflammatory
↓Drp1 expression; mitochondrial fission inhibition

↑mitochondrial fusion/mitophagy, activation of AMPK-OPA1 signalling 
pathways

↓ apoptosis 
mitochondrial membrane potential restauration

↑myocardial mitochondrial dynamics & Sirt3 expression protective in 
cardiovascular diseases

131-141

NANOMEDICINE DRUGS
Nanocarriers, nanoparticles Cyclosporin A nanoparticles conjugated with poly-lactic/glycolic acid or 

with SS-31 142

MITOCHONDRIAL TRANSFER Re-establishes mitochondrial function 143

LIFE STYLE CHANGES
Physical activity/Exercise

Calorie restriction; calorie restriction mimetics

Improve the altered mitochondrial quality control mechanisms;
nutritional strategy; the targets include mTOR, sirtuins, diminishment of 

mitochondrial dysfunction

2, 5, 33, 144-
147

Table 1: Therapeutic targeting of mitochondrial dysfunction in cardiovascular aging.

The current knowledge ascertains that aging is a remarkably 
complex process, and mitochondrial dysfunction is only one 
of its hallmarks. Using experimental models (cell cultures and 
laboratory animals) a large diversity of compounds with anti-aging 
effects have been tested/discovered. Moreover, the last decade 
brought the fast transfer of several promising compounds from 
preclinical studies to human clinical trials. According to Guarente, 
Sinclair, and Kroemer [148], the beneficial compounds are 
metformin (a biguanidine known for its glucose-lowering effects), 
NAD+ precursors, glucagon-like peptide-1 receptor agonists, 
TORC1 inhibitors, spermidine, senolytics, probiotics, and anti-
inflammatory drugs. Large clinical trials are ongoing to check 
metformin`s effects on health-span extension and cardiovascular 
advantage [149, 150]. The potential use of peptides in anti-
aging strategies is facilitated nowadays by the availability of a 
comprehensive peptide database (“AagingBase”) [151]. Targeting 
aging genes is a fast-developing research area, and TERT and 
ApoE genes are now exploited in clinical trials [152]. In applying 
caloric restriction, attention is given now to alternative “antiaging 
“diets (intermittent fasting, protein restriction, ketogenic diets, 
etc.) [153].

From the survey of human anti-aging therapies, novel research 
directions emerged: 

(i) geroscience (anti-aging medicine), as a strategy to improve 
health span free of disabled age-related pathologies [149, 154]; 
back in 2019, Campisi et al identified compounds currently tested 
in humans for their geroprotective potential: metformin, rapamycin 
analogs, sirtuin activators (resveratrol, SRT2) [2], nicotinamide 
riboside, nicotinamide mononucleotide (NAD+ precursors), 
exercise, and senolytics (discussed in the next subchapter),

(ii) rejuvenating conduits to delay/reverse aging by epigenetic 
regulation reprograming [155], and 

(iii) interventions targeting the (healthy) longevity pathways like 
MILES (Metformin in Longevity Study) [3, 5, 53, 123].

Current anti-senescence therapies targeting 
cardiovascular mitochondrial dysfunction
To challenge senescence, the link between mitochondrial 
dysfunction and cellular senescence is exploited by strategies 
that adequately adjust and reprogram the disturbed mitochondrial 
metabolism [153] (Table 2).
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Therapeutic approach Targeted mitochondrial dysfunction/Effects References

Mitochondrial metabolic reprogramming for senescence alleviation ↑ OXPHOS efficiency, ↓mtROS 153

Glycolytic enzymes inhibition Cellular glucose metabolism alterations → ECs 
senescence 156

Mitochondrial-derived peptides (Humanin, MOTS-c) administration Mitochondrial function regulation, senolytic effects  157, 158

Senolytic drugs Induce the selective apoptosis of senescent cells 30, 159, 160 

Flavonoids – Quercetin combined with Dasatinib or with Fisetin 
(Senolytic cocktail) Reduce inflammation, alleviates fraility in humans 80, 81, 161

Naringenin, hesperetin, hesperidin, fisetin, kaempferol, rutin, apigenin, 
luteolin, nobiletin, tangeretin, genistein, wogonin, epigallocatechin 

gallate (EGCG), theaflavin-3-gallate (TF2A), procyanidin C1
Modulate cellular senescence pathways/interact with 

molecular targets that regulate ageing-related processes. 162

Bcl-2 family protein inhibitor, Navitoclax (ABT-263) 
Clearance of senescent cardiomyocytes, improves 

myocardial remodelling, diastolic function, and survival 
following myocardial infarction

 163

 Heat-Shock Protein 90 inhibitors Reduces age-related symptoms in progeroid mice.  164

Polyphenols - Resveratrol (3,5,4’- trihydroxystilbene) with and without 
nanocarriers.

 Senotherapeutics used in both preclinical and clinical 
settings. 165

NAD+ precursors supplementation CD38/NAD+/SIRT1 axis for enhanced efficacy of 
geroprotectors 166

Senolytic vaccination Reduces atherosclerosis in apolipoprotein E knockout 
mice on a high-fat diet. 167

Dietary restriction Small adipocyte size and low DNA damage 168

Senomorphic drugs  Suppress SASP 30,159

mTOR inhibition Associated with SGLT2, synergistic benefits on 
senescence pathways 169

 JAK/STAT inhibition Augments muscle function in myopathy. 170

NF-kB inhibition by avenanthramide C SASP suppression 171

Activation of SIRT1 (a longevity modulator) by Nephelium lappaceum
 (rambutan) seeds SASP selective inhibition 172

SIRT3 activation Effects linked to exercise-induced adaptation 173

Rapamycin and its derivatives (rapalogs)
mTOR inhibitors, improve physiological 

parameters associated with ageing in cardiovascular 
system, including.

174

Kaempferol Anti-inflammatory, antioxidant, and anti-apoptotic 
actions 175

Ruxolitinib Reduces cytokine release and protects the endothelium 
from Ischemia/Reperfusion-mediated dysfunction. 176

Table 2: Senotherapeutic interventions targeting mitochondrial dysfunction.
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Noteworthy, in the therapeutic alleviation of aging-related 
senescence two types of drugs are considered: the “senolytics” that 
selectively remove the senescent cells (diminishing their number), 
and the “senomorphics” that suppress the production/expression of 
secreted SASP factors (Table 2). Although the search for specific 
senescent senolytics and senomorphics is ongoing, these drugs 
have a series of impediments: they are not directed to a certain 
intracellular pathway and the dynamics of the senescence process 
across the lifespan make it impossible to use a single drug to target 
the diversity of senescent cells (the use of cocktails is preferable); 
the senotherapeutic-associated adverse effects should be also 
considered: as an example, the caloric restriction could increase the 
risk for osteoporosis, and is not be employed at people with body 
mass index less than 21 kg/m2) [12, 81, 172, 178]. A current trend 
in senescence treatment is the identification of genes associated 
with this process (http://Senequest.net) along with the translation 
of preclinical endeavors on “mitochondrial transplantation” to 
clinical trials [179, 180]. 

Conclusions, Open Questions and Perspectives
This review provides an updated outlook on the molecular 
mechanisms of mitochondrial dysfunction in cardiovascular 
aging and senescence, and emphasizes the specific alleviation 
therapies. Based on the significant recent progress in this area, it 
was possible to delineate not only the common and the individual 
features of mitochondrial dysfunction in aged cardiomyocytes and 
blood vessels but also the evaluation of the attributes in aging vs. 
senescence.

It becomes apparent that several pertinent questions related to 
mitochondrial dysfunction during aging require fast answers. 
These are the following: (i) whether oxidative stress is a cause 
or a consequence of the elderly`s cardiovascular pathology, (ii) 
the uncovering of adequate aging models, (iii) the establishment 
of strategies for scavenging the dicarbonyl compounds, (iv) the 
prevention of aging-related mitochondrial proton leak, and (v) 
the identification of mechanisms involved in microvascular aging 
[4, 36, 45, 127, 143, 176]. The “geroscience” area needs reliable 
biomarkers to prevent/delay the aging process, and to assess 
the efficacy of anti-aging treatments [144, 181]. The ongoing 
endeavors are focused on the quantification of vascular aging, 
and on translational research (mitochondrial transfer included) to 
promote healthy aging and longevity [123, 143, 181, 182].

In the cellular senescence area, an urgent need is uncovering 
molecular mechanisms beyond the different types of senescence, 
and identifying phenotypes that “escape” senescence [18]. The 
recent literature acknowledged the lack of sensitive and specific 
markers for senescent cells [183]; the MAMs modulation [184], 
the metabolic reprogramming [185], and the genetic-related 
approaches, in terms of identification of senescence-related genes 
[186], and the genomic repair systems operating in this pathology 
[187, 188] are ongoing trends in this area. Taken together, the above 
directions at the horizon emphasize the complex interactions taking 
place in aging and cardiovascular senescence. Once deciphered, 
further translational research may pave the way toward people`s 

healthy aging and longer lives.
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