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Introduction:

In diabetes, the microvasculature shows both functional
and structural abnormalities. The structural hallmark of
diabetic microangiopathy is thickening of the capillary
basement membrane [1-2]. The main functional abnormalities
include increased capillary permeability, blood flow and
viscosity, and disturbed platelet function [3]. These changes
occur early in the course of diabetes and precede organ failure
by many years. Increased capillary permeability is manifested
in the retina by leakage of fluorescein [4,5] and in the kidney
by increased urinary losses of albumin which predict eventual
renal failure [5,6], platelet abnormalities, may cause stasis in
the microvasculature, leading to tissue hypoxia.

The production by endothelium cells of von Wille brand
factor 10 and endothelial-derived relaxing factor and other
substances may also be abnormal in diabetes and could
contribute to microthrombus formation [7-11].

Hypotheses Regarding the Potential Role of Non-
enzymatic Glycosylation and Browning in the Pa-
thology Associated with Diabetes Mellitus [12]

L. Structural proteins

A. Collagen: Decreased turnover, flexibility, solubility;
increased aggregating potential for platelets, binding of
immunoglobulins, crosslinking, and immunogenicity.

B. Lenscrystallinsand membrane: Opacification, increased
vulnerability to oxidative stress.

C. Basementmembrane: Increased permeability, decreased
turnover, increased thickness.

D. Extracellular matrix: Changes in binding to other
proteins.

E. Hemoglobin: Change in oxygen binding.

E  Fibrin: Decreased enzymatic degradation.

G. Red cell membrane: Increased rigidity.

H. Tubulin: Cell structure and transport.

I.  Myelin: Altered structure and immunologic recogni-

tion.

IL. Carrier proteins

A. Lipoproteins: Alternate degradative pathways and
metabolism by macrophages and endothelial cells,
increased immunogenicity.

B. Albumin: Alteration in binding properties for drugs
and in handling by the kidney.

C. Immunoglobulin G: Altered binding.

III. Enzyme systems
A. Cu-Zn superoxide dismutase
B. Fibrinogen: Altered coagulation.
C. Antithrombin ITI: Hypercoagulable state.
D

Purine nucleoside phosphorylase: Aging of erythro-
cytes.

E. Alcohol dehydrogenase: Substrate metabolism.
E Ribonuclease A: Loss of activity.
G. N-acetyl-D-glucosaminidase: Loss of activity.

H. Calmodulin: Decreased calcium binding.

IV.Nucleic acids

Age-related changes, congenital malformations.
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V. Potentiation of other diseases of postsynthetic protein
modification.

A. Carbamylation-associated  pathologic
uremia.

changes in

B. Steroid cataract formation.
C. Acetaldehyde-induced changes in alcoholism.

Biochemical Basis of the Microvascular Compli-
cations

Prolonged exposure to elevated glucose concentrations
damages tissues by causing either acute, reversible metabolic
changes (due to increased polyol pathway activity, decreased
myoinositol and altered diacylglyceral levels, or glycosylation
of proteins), or due to formation of Advanced Glycosylation
End products (AGE) [12,13]. In insulin-independent tissues
such as nerve, the renal glomerulus, lens and retina, hypergly-
cemia causes elevated tissue glucose levels. The enzyme aldose
reductase catalyses reduction of glucose to its polyol, sorbi-
tol, which is subsequently converted to fructose [14]. Sorbitol
does not cross cell membranes and its accumulation may cause
damage to the lens and altered redox state of pyridine nucleo-
tides [15].

Early glycosylation products form on proteins as glucose
attaches to amino groups. These Schiff base adducts then
undergo ‘Amadori’ rearrangement to form stable products
analogous to glycosylated haemoglobin which may affect the
function of a number of proteins and responsible for free
radical-mediated damage in diabetes [16,17] (Figurel and 2).
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Figure1: Diabetes Mellitus and Hyperglycemia — abnormal glycosylation caus-
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Figure 2: Possible complications following Endothelial Dysfunction Patholog-
ical consequences of AGE cross-linking include covalent binding of proteins
(e.g. LDL, albumin and IgG) to vessel walls, cross-linking of matrix compo-
nents in vessel walls causing resistance to enzymatic degradation. Monocyte
macrophages have a high-affinity receptor for AGE and binding may release
cytokines such as Tumor Necrosis Factor (TNF) and interleukin-1 (IL-1)
[18-21]. AGE also form on nucleic acids and histones and may cause

ing Endothelial Dysfunction.

mutations and altered gene expression [22,23].

Complications of Diabetes:

Receptors for Advanced Glycation End Products
(RAGE) as a probable mechanism for precipitat-
ing Diabetic Complications

AGE interaction with cellular receptors (RAGE) plays a
vital role in the pathogenesis of diabetic complications. RAGE
has three extracellular domains, a V-type ligand binding
domain, C1, C2 C-type immunoglobin domains , a transmem-
brane helix and a short cytosolic tail, fourth transmembrane
domain that anchors RAGE onto the membrane that interacts
with cytosolic transduction molecules. RAGE’s interaction
with AGE on macrophages causes oxidative stress and activa-
tion of nuclear factor-kB (NF-«B) via activation of the p21ras
and the Mitogen-Activated Protein (MAP) kinase signaling
pathway. Endothelin-1, tissue factor and thrombomodulin and
generation of pro-inflammatory cytokines such as interleu-
kin-1 a (IL-1a), interleukin-6 (IL-6) and Tumour Necrosis
Factor-a (TNF-a) production modulated by NF-kB.
Adhesion molecules including Vascular Cell Adhesion
Molecule-1 (VCAM-1) and InterCellular Adhesion Molecule-1
(ICAM-1) are also expressed more in addition to other effects
such as increased vascular permeability. Figure 3. [24,25]

The ‘microvascular’ (mircoangiopathic or small-vessel)
complications of diabetes include retinopathy, nephropathy
and neuropathy.
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Figure 3: Interaction of AGE with RAGE leading to oxidative stress and
initiation of inflammation cascade involving activation of MAPK pathway,
NF-kB, IL-6, TNF-a, expression of ICAM-1 and VCAM-2 which ultimately leads
to diabetic complications.

Retinopathy:

The earliest lesions of diabetic retinopathy, are thickening
of the capillary basement membrane and the capillary dilata-
tion is the first abnormality which may lead to haemorrhages
or exudates.

Capillary leakage of plasma lipids and proteins, increased
polyol activity generates sorbitol under hyperglycaemic condi-
tions associated with abnormalities myoinositol depletion and
reduced Na*-K ATPase activity [26,27]. Neovascularization
begins with dissolution of extracellular matrix and prolifer-
ation of vascular cells into a solid cord which later canalizes
[28]. The incidence of proliferative retinopathy, the principal
cause of blindness in IDDM, does not decline even after many
years of diabetes suggests that almost all IDDM are suscepti-
ble to this complication, just as they are to background lesions
[29,30].

Diabetic Nephropathy

Only a subset of patients are susceptible to diabetic
nephropathy. Susceptibility to nephropathy has recently been
attributed to a genetic predisposition to hypertension, as
indicated by parental history of high blood pressure [31].
Diabetic nephropathy is characterized by persistent
proteinuria, decreasing glomerular filtrating rate (GFR) and
increasing blood pressure [32].

Increased permeability of glomerular capillaries has been
suggested as a very early abnormality in patients with diabetes.
Microalbuminuria, thought to precede overt diabetic nephrop-
athy before the development of gross proteinuria [33,34].

Diabetic Neuropathy

Diabetic neuropathy can be classified as either reversible

or established. The epidemiology of diabetic neuropathy is
unclear because of inconsistent definitions of what constitute
neuropathy. Chronic sensory neuropathy causes unpleasant
sensations, pain in legs and feet, numbness, tingling and
muscle wasting due to decreased motor and sensory nerve
conduction caused by axonal degeneration and demyelination
[35,36]. Peripheral nerve damage contribute to the problems
of diabetic foot and male impotence [37] Late autonomic
neuropathy manifestations include generalized sweating
disorders, postural hypotension, gastrointestinal problems,
cardiovascular and genitourinary neuropathy [38,39] One of
the mechanisms suggested for diabetic neuropathy is reported

to

be that interactions between AGEs and RAGE facilitate

endo-neural vascular dysfunction, leading to microangiopathy
in the peripheral nerve [40].
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