
Gavin Publishers
Gavin Journal of Diabetes and Metabolic Disorders
Volume 2016; Pages 4
Raikou VD and Kyriaki D

1 Volume 2016; Issue 1

Review Article

Introduction:
	 In diabetes, the microvasculature shows both functional  
and structural abnormalities. The structural hallmark of  
diabetic microangiopathy is thickening of the capillary  
basement membrane [1-2]. The main functional abnormalities  
include increased capillary permeability, blood flow and  
viscosity, and disturbed platelet function [3]. These changes 
occur early in the course of diabetes and precede organ failure 
by many years.  Increased capillary permeability is manifested 
in the retina by leakage of fluorescein [4,5] and in the kidney 
by increased urinary losses of albumin which predict eventual 
renal failure [5,6], platelet abnormalities, may cause stasis in 
the microvasculature, leading to tissue hypoxia.

	 The production by endothelium cells of von Wille brand 
factor 10 and endothelial-derived relaxing factor and other  
substances may also be abnormal in diabetes and could  
contribute to microthrombus formation [7-11].

Hypotheses Regarding the Potential Role of Non-
enzymatic Glycosylation and Browning in the Pa-
thology Associated with Diabetes Mellitus [12]

I.	 Structural proteins

A.	 Collagen: Decreased turnover, flexibility, solubility;  
increased aggregating potential for platelets, binding of 
immunoglobulins, crosslinking, and immunogenicity.

B.	 Lens crystallins and membrane: Opacification, increased  
vulnerability to oxidative stress.

C.	 Basement membrane:  Increased permeability, decreased  
turnover, increased thickness.

D.	 Extracellular matrix: Changes in binding to other  
proteins.

E.	 Hemoglobin: Change in oxygen binding.

F.	 Fibrin: Decreased enzymatic degradation.

G.	 Red cell membrane:  Increased rigidity.

H.	 Tubulin:  Cell structure and transport.

I.	 Myelin: Altered structure and immunologic recogni-
tion.

II.	Carrier proteins

A.	 Lipoproteins: Alternate degradative pathways and 
metabolism by macrophages and endothelial cells,  
increased immunogenicity.

B.	 Albumin:  Alteration in binding properties for drugs 
and in handling by the kidney.

C.	 Immunoglobulin G: Altered binding.

III.	Enzyme systems

A.	 Cu-Zn superoxide dismutase

B.	 Fibrinogen: Altered coagulation.

C.	 Antithrombin III: Hypercoagulable state.

D.	 Purine nucleoside phosphorylase: Aging of erythro-
cytes.

E.	 Alcohol dehydrogenase: Substrate metabolism.

F.	 Ribonuclease A: Loss of activity.

G.	 N-acetyl-D-glucosaminidase: Loss of activity.

H.	 Calmodulin: Decreased calcium binding.

IV.	Nucleic acids

Age-related changes, congenital malformations.
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V.	 Potentiation of other diseases of postsynthetic protein  
modification.

A.	 Carbamylation-associated pathologic changes in  
uremia.

B.	 Steroid cataract formation.

C.	 Acetaldehyde-induced changes in alcoholism.

Biochemical Basis of the Microvascular Compli-
cations

	 Prolonged exposure to elevated glucose concentrations 
damages tissues by causing either acute, reversible metabolic 
changes (due to increased polyol pathway activity, decreased 
myoinositol and altered diacylglyceral levels, or glycosylation 
of proteins), or due to formation of Advanced Glycosylation 
End products (AGE) [12,13]. In insulin-independent tissues 
such as nerve, the renal glomerulus, lens and retina, hypergly-
cemia causes elevated tissue glucose levels. The enzyme aldose 
reductase catalyses reduction of glucose to its polyol, sorbi-
tol, which is subsequently converted to fructose [14].  Sorbitol 
does not cross cell membranes and its accumulation may cause 
damage to the lens and altered redox state of pyridine nucleo-
tides [15].

	 Early glycosylation products form on proteins as glucose  
attaches to amino groups. These Schiff base adducts then 
undergo ‘Amadori’ rearrangement to form stable products 
analogous to glycosylated haemoglobin which may affect the 
function of a number of proteins and responsible for free  
radical-mediated damage in diabetes [16,17] (Figure1 and 2).

Complications of Diabetes:
Receptors for Advanced Glycation End Products 
(RAGE) as a probable mechanism for precipitat-
ing  Diabetic Complications
	 AGE interaction with cellular receptors (RAGE) plays a  
vital role in the pathogenesis of diabetic complications. RAGE 
has three extracellular domains, a V-type ligand binding  
domain, C1, C2 C-type immunoglobin domains , a transmem-
brane helix and a short cytosolic tail, fourth transmembrane 
domain that anchors RAGE onto the membrane that interacts 
with cytosolic transduction molecules. RAGE’s interaction 
with AGE on macrophages causes oxidative stress and activa-
tion of nuclear factor-κB (NF-κB) via activation of the p21ras 
and the Mitogen-Activated Protein (MAP) kinase signaling 
pathway. Endothelin-1, tissue factor and thrombomodulin and  
generation of pro-inflammatory cytokines such as interleu-
kin-1 α (IL-1α), interleukin-6 (IL-6) and Tumour Necrosis  
Factor-α (TNF-α) production modulated by NF-kB.  
Adhesion molecules including Vascular Cell Adhesion  
Molecule-1 (VCAM-1) and InterCellular Adhesion Molecule-1 
(ICAM-1) are also expressed more in addition to other effects 
such as increased vascular permeability. Figure 3. [24,25]

	 The ‘microvascular’ (mircoangiopathic or small-vessel) 
complications of diabetes include retinopathy, nephropathy 
and neuropathy.

Figure1: Diabetes Mellitus and Hyperglycemia – abnormal glycosylation caus-
ing Endothelial Dysfunction.

Figure 2: Possible complications following Endothelial Dysfunction Patholog-
ical consequences of AGE cross-linking include covalent binding of proteins 
(e.g. LDL, albumin and IgG) to vessel walls, cross-linking of matrix compo-
nents in vessel walls causing resistance to enzymatic degradation.  Monocyte 
macrophages have a high-affinity receptor for AGE and binding may release  
cytokines such as Tumor Necrosis Factor (TNF) and interleukin-1 (IL-1)  
[18-21]. AGE also form on nucleic acids and histones and may cause  
mutations and altered gene expression [22,23].
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Retinopathy:

	 The earliest lesions of diabetic retinopathy, are thickening 
of the capillary basement membrane and the capillary dilata-
tion is the first abnormality which may lead to haemorrhages 
or exudates.

	 Capillary leakage of plasma lipids and proteins, increased 
polyol activity generates sorbitol under hyperglycaemic condi-
tions associated with abnormalities myoinositol depletion and 
reduced Na+-K ATPase activity [26,27].  Neovascularization 
begins with dissolution of extracellular matrix and prolifer-
ation of vascular cells into a solid cord which later canalizes 
[28].  The incidence of proliferative retinopathy, the principal 
cause of blindness in IDDM, does not decline even after many 
years of diabetes suggests that almost all IDDM are suscepti-
ble to this complication, just as they are to background lesions 
[29,30].

Diabetic Nephropathy

	 Only a subset of  patients are susceptible to diabetic  
nephropathy.  Susceptibility to nephropathy has recently been 
attributed to a genetic predisposition to hypertension, as  
indicated by parental history of high blood pressure [31].  
Diabetic nephropathy is characterized by persistent  
proteinuria, decreasing glomerular filtrating rate (GFR) and 
increasing blood pressure [32].

	 Increased permeability of glomerular capillaries has been 
suggested as a very early abnormality in patients with diabetes. 
Microalbuminuria, thought to precede overt diabetic nephrop-
athy before the development of gross proteinuria [33,34].

Diabetic Neuropathy

	 Diabetic neuropathy can be classified as either reversible 
or established. The epidemiology of diabetic neuropathy is 
unclear because of inconsistent definitions of what constitute 
neuropathy.  Chronic sensory neuropathy causes unpleasant  
sensations, pain in legs and feet, numbness, tingling and  
muscle wasting due to decreased motor and sensory nerve 
conduction caused by axonal degeneration and demyelination 
[35,36]. Peripheral nerve damage contribute to the problems 
of diabetic foot and male impotence [37] Late autonomic  
neuropathy manifestations include generalized sweating  
disorders, postural hypotension, gastrointestinal problems, 
cardiovascular and genitourinary neuropathy [38,39] One of 
the mechanisms suggested for diabetic neuropathy is reported  
to be that interactions between AGEs and RAGE facilitate  
endo-neural vascular dysfunction, leading to microangiopathy 
in the peripheral nerve [40].
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