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KAbstract

The problem of optimization of Multiproduct Batch Plant Design (MBPD) in chemical engineering systems where the
design variables are the size of the equipment elements and the setting of operating conditions. The application is a multiproduct
batch plant for the manufacture of four recombinant proteins as insulin, chymosin, vaccine and protease. However, addressing
an important class of optimization problems handed over the serious combinatorial aspect of the complication. The procedure
implemented consists in using machine learning algorithms, in order to minimize the investment cost and find out the number
and size of parallel equipment units in each stage. The calculation results (investment cost, number and size of equipment, com-
putational time, CPU time, idle times in plant, production rate, annual demand rate, setup cost, holding cost, variable cost, selling
price, inspection rate, return cost, penalty cost, screening cost) obtained by metaheuristics machine learning tools are better than
mixed integer no linear programming. This approach can facilitate the manufacturers of pharmaceutical drug to get an optimal
design and makes up a remarkably suggested plan for having a benefit of efficient results.
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Introduction

Pharmaceutical researchers and biotechnology companies
are devoted to developing medicines, such as: therapeutic proteins,
human insulin, vaccines for hepatitis, food grade protein, chymosin
detergent enzyme, and cryophilic protease. This allows patients
to live longer, heathier, and more productive. Within this context,
there is a high degree of consensus in the biomanufacturing
industry that product quality, customer service, and cost efficiency
are fundamental for success. The pharmaceutical industry must
join its effort with government and the health professions to seek
new, innovative, and cost effective approaches in the development
process. However, the pharmaceutical process is characterized
by a membership function involved in the field of chemical
engineering.

Nevertheless, for understanding a chemical engineering
system, we have to go back to the mathematical modeling,
as we know the mathematical modeling is a powerful tool to

solve different problems which arise in chemical engineering
optimization. Problems as designing a plant, determining the
number of units for a specific task, assigning raw materials to
different production processes and deciding the production planning
or production targets are some of the issues that can be solved
through mathematical modeling. In other words, the mathematical
formulations are used to make decisions at different levels, from
the synthesis and design of the process up to its operation and
scheduling [1]. In spite of that, precisely in recent years, there
has been an increased interest development of systematic method
for the design of batch process in chemicals, food products, and
pharmaceutical industries. Basically, batch plants are composed of
items operating in a discontinuous way. Each batch then visits a
fixed number of equipment items, as required by a given synthesis
sequence so called production recipe. That means, the design of
batch plants requires involving how equipment may be utilized.
In addition, the optimal design of a multiproduct batch chemical
process involves the production requirement of each product
and the total production time available for all products has been
considered. The number and size of parallel equipment units in
each stage as well as the location and size of intermediate storage
are to be determined in order to minimize the investment cost.
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Many works in the literature on batch process design are based
on expressions that relate the batch sizes linearly with the equipment
sizes [2], made a comprehensive framework for optimal design
of batch plants. Dietz, Azzaro-Pantel, Pibouleau & Domenech
[3], developed an approach of multiobjective optimization for
multiproduct batch plant design under economic and environmental
considerations. Ponsich, Azzaro-Pantel, Domenech & Pibouleau,
illustrated some guidelines for genetic algorithms implementation
in MINLP batch plant design problem [4]. Dietz, Aguilar-Lasserre,
Azzaro-Pantel, Pibouleau & Domenech, presented of fuzzy
multiobjective algorithm for multiproduct batch plant [5]. In
addition, they’ve used genetic algorithms to solve multiobjective
optimization problem with an application to optimal batch plant
design in process system engineering. Aguilar-Lasserre, Bautista
Bautista, Ponsich & Gonzalez Huerta, developed an AHP-based
decision making tool for the solution of multiproduct batch plant
design problem under imprecise demand [6]. Aguilar-Lasserre,
Giner, Azzaro-Pantel, Guillermo, Constantino, Pibouleau & Rubén,
illustrated the problem of the optimal design of batch plants with
imprecise demands using concepts of fuzzy logic [7]. Borisenko,
Kegel & Gorlatch, developed and performed a parallel algorithm
for finding optimal design for multiproduct batch plants [8].

In the conventional optimal design of a multiproduct batch
chemical plant [9], a designer specifies the production requirements
for each product and total production time for all products [10].
The number required of volume and size of parallel equipment
units in each stage is to be determined in order to minimize the
investment cost.

The case of study is a multiproduct batch plant for the
production of proteins taken from the literature, we will only
consider multiproduct batch plants, which means that all the
products follow the same operating steps [11,12], the structure
of the variables are the equipment sizes and number of each unit
operationthatgenerally takediscrete values. Generally, optimization
of multiple parameters is an arduous and time consuming task. In
this context, we emphasize referring to the work of Montagna,
et al. [13], and Asenjo, et al. [14] about the strategy based on
monoproduct campaigns was assumed, even when considering
the design of multiproduct batch plant. Therefore, machine
learning applications are everywhere, from self-driving cars, spam
detection, document search, trading strategies, and even speech
recognition. This makes machine learning suitable for the era of
big data era and data science, especially in pharmaceutical and
pharmacological sciences. The main challenge is how to convert
data to see what is possible.

The aim of this work is to solve the multiproduct batch plant
design problem using (PSA) and (GAs), respectively. The model

presented is general, it takes into account all the available options
to increase the efficiency of the batch plant design: unit duplication
in-phase and out-phase and intermediate storage tanks.

We have found out that PSA performs effectively and gives a
solution, but we would like to solve the problem more effectively,
that’s why we proposed to apply GAs, an intelligent problem-
solving method that has demonstrated its effectiveness in solving
combinatorial optimization problem, and satisfactory results are
obtained [15].

The paper is organized as follows, section 2 is devoted to
the materials and methods including the system description and
experimental data, problem statement, model equations and the
methodology. While, the results and discussions are handling and
reported in section 3. Finally, the conclusions of this work are
drawn.

Materials and Methods
System Description and Experimental Data

The case study, taken from the literature, is a multiproduct
batch plant for the production of proteins [16]. This example is
used as a test bench since it provides models describing the unit
operations involved in the process. The batch plant involves eight
stages for producing four recombinant proteins, on one hand, two
therapeutic proteins, human insulin (A) and vaccine for hepatitis
(B) and, on the other hand, a food grade protein, chymosin (C),
and a detergent enzyme, cryophilic protease (D). Figure 1 is the
flowsheet of the multiproduct batch plant considered in this study.

All the proteins are produced as cells grow in the fermenter.
It is hardly necessary to say that the number of intermediate storage
tanks is an important constituent of our process: Three tanks have
been selected: the first after the fermenter, the second after the first
ultrafilter, and the third after the second ultrafilter.

Vaccines and protease are considered to be intracellular. The
first microfilter is used to concentrate the cell suspension, which is
then sent to the homogenizer for the second microfilter, which is
used to remove the cell debris from the solution proteins. The first
ultrafiltration step is designed to concentrate the solution in order to
minimize the extractor volume. In the liquid-liquid extractor, salt
concentration (NaCl) is used as solution in order to minimize the
extractor volume. In the liquid-liquid extractor, salt concentration
(NaCl) is used to first drive the product to a Poly-Ethylene-Glycol
(PEG) phase and again into an aqueous saline solution in the back
extraction. The second ultrafiltration is used again to concentrate
the solution. The last stage is chromatography, during which
selective binding is used to better separate the product of interest
from the other proteins.
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Figure 1: Multiproduct batch plant for protein production.

Insulin and chymosin are extracellular products. Proteins are separated from the cells in the first microfilter, where cells and
some of the supernatant liquid stay behind. To reduce the amount of valuable products lost in the retentate, extra water is added to the
cell suspension. The homogenizer and the second microfilter for cell debris removal are not used when the product is extracellular.
Nevertheless, the first ultrafilter is necessary to concentrate the dilute solution prior to extraction. The final step of extraction, second
ultrafiltration, and chromatography are common to both the extracellular and intracellular products. In Table 1 we make an estimation of
production targets and product prices [17-19].

Product Name Production (kg/year) | Price (dollars/kg)
| Insulin 1500 8000
2 Vaccine 1000 7500
3 Chymosin 3000 1000
4 Protease 6000 500

Table 1: Product prices and demands.
Problem Statement

The model formulation for DMBP’s problem approach adopted in this section is based on Montagna, et al. [16]. It considers not
only treatment in batch steps, which usually appear in all types of formulation, but also represents semi continuous units that are part
of the whole process (pumps, heat exchangers, etc). A semi-continuous unit is defined as a continuous unit alternating idle times and
normal activity periods. Besides, this formulation takes into account mid-term intermediate storage tanks, the obligatory mass balance
at the intermediate storage stage, which is one of the most efficient strategies to decouple bottlenecks in batch plant design. They are
just used to divide the whole process into subprocesses in order to store an amount of materials corresponding to the difference of each
sub-process productivity. In this section we describe the unit models from a conceptual standpoint and also the procedure to derive the
data needed for solving the mathematical model. These data are summarized in Tables 2 and 3.

Stage (j) Si (m° /kg)
Unit Insulin WVaccine Chymosin Protease
Fermenter 1.250 0.625 0.415 0.3125
2 Microfilter I r: 1.25 r: 0.625 r: 0.415 r: 0.3125
p: 2.5 p: no p: 0.830 p: no
3 Homogenizer No 0.155 No 0.08
4 Microfilter 11 No r: 0.155 No r: 0.08
p: 0.31 p: 0.16
5 Ultrafilter I 2.50 0.31 0.830 0.16
6 Extractor 0.40 0.20 0.135 0.10
7 Ultrafilter 11 0.40 0.20 0.135 0.10
8 Chromatographer | 0.05 0.05 0.05 0.05

Table 2: Size factors Sij (1, retentate; p, permeate).
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Stage Tjj (h)

i | Unit Insulin | Vaccine Chymosin ' Protease
Fermenter 24 24 24 24

2 Microfilter I 125A7'B; |25A71B; 415A7'B; |1.25A7'B;
Homogenizer No 0.465 No 0.24 cap™'B;

cap_'Bi

4 Microfilter I1 No 3.1 A°'B; No 1.6 A~'B;

5 Ultrafilter 105A~'B; 5.5 A7!B; 3I5AB; IATIB;

6 Extractor 1.5 1.5 1.5 1.5

7 Ultrafilter 11 18A~'B; 8 A7'B; 475A7'B; | 3A'B;

3 Chromatographer | 0.5 0.5 0.5 0.5

[A: area of microfilters and ultrafilters; B;: batch size of product i]

Table 3: Time factors Tij [B, (kg)].
Most of the separation processes information are taken from Asenjo and Patrick [20], the posynomial modeling approach is taken
from Salomone and Iribarren [21]. The general batch process literature as reported by Biegler, et al. [22], describes batch stages j through
a sizing equation and a cycle time that are applied for a product i as follows:

v > S,B, (1)

Where V. is the size of stage j, e.g., m® of the vessel, B, is the batch size for product 7, e.g., kg of product exiting from the last stage,
S, is the size factor of stage j product i, i.e., the size needed at stage j to produce lkg of final product i and T, is the time required to
process a batch of product I in stage j considering the fermentor and the insulin product as an example. If we estimate a final concentration
of 50kg dry biomass/m?, that 0.4 of this biomass is proteins and 0.05 of these proteins is insulin, and an overall yield estimate of the
process of 0.8 (0.8 of the insulin produced in the fermenter exits the chromatographic column), then the size factor for the fermenter for
producing insulin can be estimate as

S = i
" 50kgx0.4x0.05%0.8

=1.25m’ (2)

Similarly, vaccine, chymosine, and cryophilic protease were estimated to be 0.1, 0.15, and 0.2 of total proteins of the biomass,
respectively. The batch stage description is completed by estimating a processing time T, for stage j when producing product i. For the
fermenter, we estimate 7 =24hrs for all products, which includes time for charging, cell growth, and discharging.

This model of batch stages given by constraint (1a) is the simplest one. Its level of detail suffices for the fermenter and the
extractor. These units are truly batch items chat hold the load to be processed and whose operations are governed by kinetics, and hence,
the operating time does not depend on the batch size.

As a first approximation for the extractor, we take a phase ratio of (1b) for all products. Therefore, the required extractor volume is
twice the inlet batch volume, while the inlet and outlet aqueous saline batches are of the same volume. It is also assumed, as a result of
preliminary balances, that this operation reduces the total amount of proteins to about twice the amount of the target protein. With respect
to the kinetic effects we take as first estimates [23] the following times: 15 min stirring to approach phase equilibrium, 30 min settling
to get almost complete disengaging of the phases, and 20 min for charging and discharging. A special consideration must be done in the
case of the microfiltration, homogenization, and ultrafiltration stages. Although the mathematical model considers them batch stages,
their corresponding equipment consists of holding vessels and semicontinous units that operate on the material that is recirculated into
the holding vessel. The batch items are sized as described before. For example, for the homogenizer processing cryophilic protease,
we estimated that the fermentor broth is concentrated 4 times up to 200kg/m? at microfilter 1 and considered a yield of 1 because
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the intracellular protease is fully retained at the microfilter. Then
the size factor of the homogenizer vessel is 4 times smaller than
the fermenters, i.e., SU:0.08m3/kg protease. The sizing equation
for semicontinuous items can also be found in the general batch
processes literature [24]:

€)

oy
! 5'9

Where R is the size of the semicontinuous item k, usually a
rate of processing. For example, in the case of the homogenizer, it
is the capacity in cubic meters of suspension per hour, but in the
case of the filters R_is their area of filtration Aj(mz). B, is again the
batch size, 6@7 is the operating time that the semicontinuous item j
needs to process a batch of product i, and D, is the duty factor (a
size factor for semicontinuous items), i.e., the size needed at stage
j to process 1 kg of product i in 1 h. For example, if we adopt three
passes through the homogenizer, its duty factor is the vessel size
factor 0.08m%kg, i.e. D ,=0.24m’/kg The meaning of a capacity of
0.24m’/h is that it allows 1kg of final product cryophilic protease
to be processed in 1hr.

The general batch processes literature considers
semicontinuous units to work in series with batch units so that
their operating time are the times for filling or emptying the batch
units. However, in the process considered, pumps are the only
semicontinuous units, which transfer batches between the units. As
the pumps cost does not have a relevant impact on the plant design,
they were not explicitly modeled. The times for filling and emptying
batch items were estimated and included in the batch cycle times.
On the other hand, the process does have special semicontinuous
units with an important economic impact on the cost. They are the
homogenizer and ultrafilters, but their operating time is the batch
processing time of the respective stage. Their mathematical model
has been introduced by Salomone and Iribarren, 1994. A size factor
for the batch item and a time expression for the stage that depends
on both the batch size and the size of the semicontinuous item are
as follows:

(4a)
(4b)

Where RJ. refers to the size of the semicontinuous item that

operates on the batch size at stage ;. Ti0 and 7 are appropriate
time factors that take into account contributions to the total
cycle time of the stage that are either fixed amounts of time or
proportional to the batch size and inversely proportional to the size

of the semicontinuous item. For the homogenizer, R, is its capacity,

7 the duty factor of the homogenizer itself, and 7’ includes the
estimated times for filling and emptying the homogenizer holding
vessel. In the case of ultrafilters, a fixed permeate flux model was
considered with a rate of 20ml/m? of membrane area/h. In this
case, the size of the semicontinuous item R/. is the filtration area.

Tfﬂis again the time for filling and emptying the retentate holding

vessel, and 7iis the inverse of the permeate flux times the ratio
(m3permeate/i<g).

Thisratio is estimated from a mass balance taking into account
that the ultrafilters are used for a water removal from solutions
up to 50kg/L of total proteins. Ultrafilters are used to reduce the
volume required at the liquid extractor and the chromatographic
column. The upper bound on concentration is a constraint that
avoids protein precipitation. The microfilter model is quite similar
to that of the ultrafilter, but there are two batch items associated to
them instead of one, the retentate and the permeate vessels, plus
the semicontinuous item area of filtration. For microfilter 1 a fixed
permeate flux of 200L/m’h is adopted. For extracellular insulin and
chymosin, we estimate a total permeate (feedwater plus make up
water) twice the feed, while for intracellular protease and vaccine
we estimate it in 75% of the feed (the retentate is concentrated four
times). For microfilter 2 a fixed permeate flux model is also used.
In this case, the flux is smaller than the one in microfilter 1 because
the pore size to retain cell debris is smaller than the one for whole
cells. As a first estimation we take 100L/m2h and a total permeate
(feed plus make up water) twice the feed. With respect to the
chromatographic column, an adsorptive type chromatography is
considered, with a binding capacity of 20kg/m? of column packing.
The size factor of this unit is the inverse of that binding capacity.
As a first approximation, a fixed total operating time of 0.5h was
estimated for loading, eluting, and washing regeneration.

Finally, the stage model is completed with a cost model that
expresses the cost of each unit as a function of its size, in the form
of'a power law. These expressions are summarized in Table 4, with
most of the cost data taken from Petrides, et al. [19].

Unit Size Cost
Fermenter V; (m?) 63400 V00
Micro and ultrafilters Vietentae (M°) 5750 v,0-6
Homogenizer Vholding (M) 5750 0o
Cap (m’) 12100 cap ™
Extractor Vextr (M°) 23100 V065
Chromatography Veprom (m°) 360000 V0993

Table 4: Cost of equipment (U.S.dollars).
Model Equations

The mathematical optimization model for designing the
multiproduct batch plant is described in this section. The model
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includes the stage models described in the previous section plus
additional constraints that are explained in this section. The plant
consists of M batch stages (in our case 8 batch stages). Each
stage j has a size Vj(m3), and more than one unit can be installed
in parallel. They can work either in-phase (starting operation
simultaneously) or out of phase (starting times are distributed
equally spaced between them). The duplication in phase is adopted
in case the required stage size exceeds the specific upper bound.
In this case G, units are selected, splitting the incoming batch into
Gj smaller batches, which are processed simultaneously by the Gj
units. After processing, the batches are added again into a unique
outgoing batch. Otherwise, duplication out-of-phase is used for
time-limiting stages, if a stage has the largest processing time,
then it is a bottleneck for the production rate. Assigning M, units
at this stage, working in out of phase mode, reduces the limiting
processing time and thus increases the production rate of the train.
For this case, the batches coming from the upstream stages are not
split. Instead, successive batches produced by the upstream stage
are received by different units of stage j, which in turn pass them
at equally spaced times onto the downstream batch stage. The
allocation and sizing of intermediate storage has been included
in the model to get a more efficient plant design. The goal is to
increase unit utilization. The insertion of a storage tank decouples
the process into two subprocesses: one upstream from the tank,
and the other downstream. This allows the adoption of independent
batch sizes and limiting cycle times for each subprocess.

Therefore, the previously unique B, is changed to batch sizes
B, defined for product i in stage j. Appropriate constraints adjust the
batch sizes among different units. The objective is to minimize the
capital cost of the plant. The decision variables in the model are as
follows: At each batch stage the number of parallel units in phase
and out of phase and their size, and the installation or absence of
intermediate storage between the batch stages and their size. The
plant is designed to satisfy a demand of Qi(kg) of each product i,
for the P product considered, within a time horizon H(%).

In summary, the objective function to be optimized is

MinCost =% M G,aV™= +3VI "

Where o, and a, C. and n, are appropriate cost coefficients that
depend on the type of equipment being considered. VT, is the size
of the storage tank allocated after stage j. The size of each unit has
to be large enough to be able to process every product:

P I = Lgeiy, M (6)

Where S is the size factor for product i in stage /. In case of

parallel units working in phase, the division of B, by the number
of units G, takes into account the reduction in the batch size to be
processed by these units. The operation time 7ij to process product
i at stage j has the general following form:

E=F'+1

Where 7'°and 7 'are appropriate constants that depend
on both the prdduct and the stage. Expression 7 accounts for a
fixed and variable contribution to the total operating time. The last
term in Eq 7 depends on both the batch size and the size of the
semicontinuous item associated to this batch stage, as was already
discussed previousely.

The limiting cycle time for product i in the subprocess 7,
TL", is the largest processing time in this production train:

Yizl...P;Vjed ;Yh

T
1L = ﬁ ®)

i

Where J, is the set of units which conform the subprocess
h the division by the number of units in parallel working out of
phase, M, takes into account the reduction in the cycle time of this
stage due to the operation of M, units that alternatively process
the consecutive batches. To avoid accumulation of material, the
processing rate of both subprocess downstream and upstream of
the storage tank must be the same:

B ::'
7L*

B} viz12.., P
TL*

)

The constraints 9 equalizes the production rate upstream and
downstream of the storage tank. To express 9 in a simple form, the
inverse of the production rate of product i(E), is defined as

B

s

Vi=12,.,P;VjeJ ;Vh (10)

Expression 10 is used to replace r »in constraint 8, dropping
constraint 9. The production constraint is posed as follows: during
the time horizon A the plant must produce the target production
quantities Qi of each product i. The number of batches of each

product i to be produced during time / is , , and the production of
each batch demands a time 7L, The following constraints holds:
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>»Q.E <H (1)

The size of the storage tank V7, allocated after batch stage ] , is given by the following expression [25]:

-

VI 5 ST B+ B )V i =hey MV S e M =1 (13

Where ST, i is the size factor corresponding to the intermediate storage tank, with identical definition to the batch stages. As no a
priori tank allocation is given, binary variables y. are used to select their allocation. The value of variables Yy is 1 if a tank is placed in
position j, or zero otherwise. Constraint 12 is generalized to size the tank only if it exits:

VI . >ST (B,+B,_)-F(l-y )Vi=1.,P:¥j=1,,.M-1 (3)

Where F, is a constant value sufficiently large such that when Y is 0 (the tank does not exist), the constraint is trivially satisfied
for any value of V'T..

In particular, the cost minimization will drive VT=0. When the tank exists (yj:1 ) the term with F vanishes, and the original
constraint (12) holds. If the storage tank does not exist between two consecutive stages, then their batch sizes are constrained to be equal.
Otherwise, this constraint is relaxed. This effect is imposed by the following constraints [26]:

3
1+ %—1 yJEB” £1+((Il—1)yj Vi=l.,P;Vj=1L.,M-1 (4

41

Where @ is a constant value corresponding to the maximum ratio allowed between two consecutive batch sizes.

In summary, the multiproduct plant design model that includes the options of parallel units in-phase and/or out of phase and
provision of intermediate storage, consists of the objective function 5 subject to constraints 6, 8, 11, 13, and 14, plus the upper and
lower bounds that may apply. An important feature of the model is that both the objective function and the constraints are posynomial
expressions that possess a unique local (and thus, global) solution [27]. This basic model has been adapted to handle the particular feature
of the composite stages (homogenizer, ultrafilters, and microfilters). In this case, constraint 6 is applied not to a general batch stage size
but to each of the items that compose it. So in the case of microfilters, constraint 6 applies to both the retentate and the permeate vessels.
A new parameter SR, was introduced to represent the size factor of the retentate vessel, while S, was left for the permeate vessel. Also
in this case, the objective function must account for all the stage components. The notation oj and ai were left for the cost coefficients

of the permeate vessel, b, and ﬂj for the retentate vessel, and d, and 9, for the filtration area. A similar approach was implemented for the
ultrafilters (retentate vessel and ultrafiltration area) and homogenizer (holding vessel and the homogenizer itself).

Methodology

Between 1960s and 1970s witnessed a tremendous development in the size and complexity of industrial organizations.
Administrative decision-making has become very complex and involves large numbers of workers, materials and equipment. A decision
is a recommendation for the best design or operation in a given system or process engineering, so as to minimize the costs or maximize
the gains [28]. Using the term “best” implies that there is a choice or set of alternative strategies of action to make decisions. The
term optimal is usually used to denote the maximum or minimum of the objective function and the overall process of maximizing or
minimizing is called optimization. The optimization problems are not only in the design of industrial systems and services, but also apply
in the manufacturing and operation of these systems once they are designed. Including various methods of optimization, we can mention:
MINLP, Particle Swarm Optimization and Genetics Algorithms.
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Particle Swarm Algorithms

The PSA is a population-based optimization algorithm,
which was inspired by the social behavior of animals such as
fish schooling and birds flocking, it can solve a variety of hard
optimization problems. It can handle constrains with mixed
variables requiring only a few parameters to be tuned, making
it attractive from an implementation viewpoint [29]. In PSA,
its population is called a swarm and each individual is called a
particle. Each particle flies through the problem space to search
for optima. Each particle represents a potential solution of solution
space; all particles form a swarm. The best position passed through
by a flying particle is the optimal solution of this particle and is
called pbest, and the best position passed through by a swarm is
considered as optimal solution of the global and is called gbest.
Each particle updates itself by pbest and gbest. A new generation is
produced by this updating. The quality of a particle is evaluated by
value the adaptability of an optimal function. In PSA, each particle
can be regard as a point of solution space. Assume the number
of particles in a group is M, and the dimension of variable of a
particle is N. The ith particle at iteration k has the following two
attributes:

(1) A current position in an N-dimensional search space which

represents a potential solution: y*— (J b ) where y+ ¢[1 |18
the nth dimensional variable, 1<,<y, In and u, are the lower and

upper bounds for the nth dimension, respectlvely

(2) A current velocity, p (V,n Ve V,Av]’ which controls its fly
speed and direction.

VE =0 me) At each iteration, the swarm is uploaded by

the following equations:

y+ is restricted to a maximum velocity

v =er} """‘1”1(“;':i _X:i)'*":l’: (P: _X:ﬁ)

(15)
(16)

Xft=xfF+v i

Where P, is the best previous position of the ith particle (also
known as pbest) and P, is the global best position among all the
particles in the swarm (also known as gbest). They are given by
the following equations:

B s B i, ) =8 17

X, (X,)<h

win (7 (2,), 7B ). (5, ) (e

P, (PP, P )1 (R.)=

Where fis the objective function, M is the total number of
particles. 7, and r, are the elements generated from two uniform
random sequences on the interval [0,1]: r,aU(0,1); r,aU(0,1)and
o is an inertia weight [30] which is typically chosen in the range
of [0,1]. A larger inertia weight facilitates global exploration and

a smaller inertia weight tends to facilitate local exploration to
fine tune the current search area. There fore the inertia weight w
is critical for the PSO’s convergence behavior. A suitable value
for the inertia weight e usually provides balance between global
and local exploration abilities and consequently results in a better
optimum solution. Initially the inertia weight was kept constant.
However, some literatures indicated that it is better to initially set
the inertia to a large value, in order to promote global exploration
of the search space, and gradually decrease it to get more refined
solutions. C, and C, are acceleration constants which also control
how far a particle will move in a single iteration.

Genetic Algorithms Approach

GA, proposed in this paper based on the work of Wang,
et al. [30], are related to the mechanics of natural selection and
natural genetics. They combine the survival of the fittest among
string structures with a structured yet randomized information
exchange to form search algorithms with some of the innovative
flair of human search. In every generation, a new set of individuals
(strings) is created using bits and pieces of the fittest of the old
individuals; while randomized, a GA are no simple random walk.
They efficiently exploit historical information to speculate on
new search points with expected improved performance [30].
According to Wang, et al. [30], the canonical steps of the GA can
be described as follows:

(1) The problem to be addressed is defined and captured in
an objective function that indicated the fitness of any potential
solution.

2) A population of candidate solutions is initialized subject
to certain constraints. Typically, each trial solution is coded as a
vector X, termed a chromosome, with elements being described
as solutions represented by binary strings. The desired degree
of precision would indicate the appropriate length of the binary
coding.

3) Each chromosome X, =1,2,....P, in the population is
decoded into a form appropriate for evaluation and is then assigned
a fitness score, u(X) according to the objective.

(4) Selection in genetics algorithms is often accomplished via
differential reproduction according to fitness. In a typical approach,
each chromosome is assigned a probability of reproduction,
Pl,l.:1,2, ....P, sothat its likelihood of being selected is proportional
to its fitness relative to the other chromosomes in the population.
If the fitness of each chromosome is a strictly positive number to
be maximized, this is often accomplished using roulette wheel
selection (Goldberg, 1989). Successive trials are conducted in
which a chromosome is selected, until all available positions are
filled. Those chromosomes with above-average fitness will tend to
generate more copies than those with below-average fitness.
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(5)  According to the assigned probabilities of reproduction, P, =1,2,....P, a new population of chromosomes is generated by
probabilistically selecting strings from the current population. The selected chromosomes generate “offspring” via the use of specific
genetic operators, such as crossover and bit mutation. Crossover is applied to two chromosomes (parents) and creates two new
chromosomes (offspring) by selecting a random position along the coding and splicing the section that appears before the selected
position in the first string with the section that appears after the selected position in the second string and vice versa. Bit mutation simply
offers the chance to flip each bit in the coding of a new solution.

Algorithms Parameters WValue
GA Population size 200
| Number of generations | 1000
Crossover probability 0.6
Mutation probability 04
| Elitism 1
PSA Number of particles 200
| Number of generations 1000
| Inertial weight | 1.00
Acceleration constants 2.00

Table 5: The parameters used for running GA and PSA.
According to our experiments, the parameters used for running GA and PSA are showed in Table 5.
Statistical Analysis Methods

The interest in statistical analysis methods has grown recently in the field of computational intelligence. In this section, I will discuss
the basic and give a survey of a complete set of variance analysis procedures developed to perform the comparison between PSA and
GA, via the use of describing a test of the null hypothesis, which applies to independent random samples from two normal populations

of size n; and n; are taken from normal population having the same variance, it follows F distribution with n; — 1 and n; —1 degrees

. . . 51
of freedom, according to this equation: F = 5—;
2

Results and Discussions

The problem could be formulated as the minimization of the investment cost for equipment and storage tanks. Given that the
problem modeled has non linear objective function. For the purpose of optimization problem, the model developed has been solved with
PSA and Gas Matlab Toolbox respectively, which is included in the Matlab optimization modeling software, using the data shown in
Tables 1, 2, 3, 4. A horizon time of 6000 h has been considered.

Unit* ST;; size factor for product i in stage j

Insulin | Vaccine . Chymosin Protease
Fermenter 1.25 0.625 0.415 0.3125
Microfilter I 2.50 0.155 0.83 0.08
Homogenizer 2.50 0.155 0.83 0.08
Microfilter I1 2.50 0.31 0.83 0.16
Ultrafilter I 0.40 0.20 0.135 0.10
Extractor 0.40 0.20 0.135 0.10
Ultrafilter IT 0.05 0.05 0.05 0.05
Chromatography |0 ] 0 0

“Tank cost coefficient: ¢; = 5750; n; = 0.6

Table 6: Intermediate storage cost coefficients and size factors.

Table 7 shows the best, the average and the worst among the final fitness values and the related standard deviation obtained in the 30
runs of PSA and GA, respectively.
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Values PSA (%) GA (S)

Best 912,450 833,647
Average 948,948 850,319.9401
Worst 976,321.5001 865.492.3154

Standard deviation | 9.7558 [1.5327

Table 7: Comparison of results for 30 runs between PSA and GA.

It is clear from the summary of the results shown in Table 7,
that the performance of both PSA and GA produce adequate values
regarding the cost for equipment and storage tanks. However, GA
performs better than the PSA in terms of the average and the worst
fitness values and the standard deviation. Table 7, also, shows the
best final solution found in the 30 runs of PSA and GA. According
to our knowledge, the case study about the optimal design of
protein production plant has been taken from Montagna, et al. [16].
However, they solved the problem using rigorous mathematical
programing (MINLP), their model includes 104 binary variables
and has been convexified using the transformation proposed by
Kocis and Grossman. The MINLP model has been solved using
DICOPT++, which is included in the GAMS optimization modeling
software. The algorithm implemented in DICOPT++ relies on the
Outer Approximation/Equality Relaxation/Augmented Penalty
(OA/ER/AP) method. The OA/ER/AP solution method consists of
the decomposition of the original MINLP problems into a sequence
oftwo subproblems: a Non Linear Programming (NLP) subproblem
and a Mixed Integer Linear Programming (MILP) subproblem also
known as the Master problem, which is solved to global optimality
(minimize the caplital cost $829,500). However, in previous work
of Montagna, et al [16], their model needed a long computational
time (more than 86400 seconds) and require several initial values
to the optimization variables, they also showed in their paper that
the behavior of the demand was completely deterministic.

Whilst, this assumption does not seem to be always a
reliable representation of the reality, since in practice the demand
of pharmaceutical products resulting from the batch industry is
usually variable. Simulations outcomes were then compared with
experimental data in order to check the accuracy of the method.
The error from the optimal solution is given by:

_ 100 T T tel (19)

X

a=xp

%

error

In this research, x_ is considered to be the optimal solution
founded by Montagna (Plant cost $829,500), where the equation
19 is a criterion to confirm the optimal values. Table 8 presents
the results obtained in different optimization runs for multiproduct
batch plant design. For each simulator run, the average numerical
effort spent on solving the problem on LINUX System, Intel ® D,
CPU2.80 Ghz, 2.99 of RAM. Table 8 shows plant cost, % from
optimal solution and CPU time obtaining during 30 runs. PSA
and GA performed effectively and give a solution within 10 and
0.5% of the global optimal $912,450 and $833,647, respectively.
Furthermore, the important feedback could be taken from Table 8,
is the GA results in a faster convergence than PSA and the MINLP
algorithm. In addition, the GA is so close to the global optimal
of MBPD (0.5% from optimal solution) and provides also an
interesting solution, in terms of quality as well as of computational
time as illustrated in Table 8, while Table 9 presents the sizes for
the units involving a set of discrete equipment structure given by
PSA. The inconvenience of this configuration is just stopped at
6000h with risk of failing to fulfill the potential future demand
coming from a fluctuation of the market.

Technique

CPU time (s)

Plant cost ($) % from optimal solution
PSA 912,450 10 800
GA 833,647 0.5 100

Table 8: Optimization runs results for the investment cost founded by PSA and GA during 30 runs.

-

Stage 1 2 3 - 5 [+] 7 8
Vi 247456 p:9.922 | L1814 p:2.3628 | 9.922 0.8921 0.6017 0.0825
4

r: 4.961 r: 1181

Rj NA A cap: A:B.008 | A: NA Al NA
16.2041 1.0989 1093301 17.8134

VT; 297066 | NA NA NA 22154 NA 0.3795 NA

M; 3 3 3 3 3 3 3 3

G 3 3 3 3 3 3 3 3

Table 9: Equipment structure calculated by PSA.
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Stage 1 2 3 - 3 v] 7 8

Vi 22,6085  p:9.0651 | 1.0794 p: 2.1587 | 9.0651 0.8151 0.5497 0.0754
r: 4.5325 r: 1.0794

R; NA . A | cap: AT9194 ) A . NA A NA
14.8047 | 1.004 99.8880 16.2750

VT; 27.1410 NA NA NA 2.0241 NA 0.3467 NA

M; 1 1 1 | 1 1 | |

G; 1 1 1 | 1 1 1 |

Table 10: Equipment structure calculated by GA.

In order to show how the evolution process is going on for both PSA and GAs, respectively, the convergence of the best fitness
values is shown in Figure 1. The convergence rate of objective function values as a function of generations for both PSA and GAs is shown
in Figure 1, where for clarity only 1000 generations are shown. It is clear from this figure that, for the optimization problem considered,
GAs decrease rapidly and converge at a faster rate (around 500 generations) compared to that for PSA (about 800 generations), from
which it is clear that GAs seem to perform better compared to PSA. So, for the present problem the performance of the GAs is better
than PSA from an evolutionary point of view.

To compare the computational time, the swarm/population size is fixed to 200 for both PSA and GAs algorithms. Whereas, the
generation number is varied. Simulation were carried out and conducted on LINUX System, Intel (R) D, CPU 2.80 Ghz, 2.99 of RAM
Computer, in the MATLAB 7.0.1 environment. Here the result in the form of graph is shown in Figure 1. It is clear from Figure 1 that
the computational time for GAs is very low compared to the PSA optimization algorithm. Further, it can also be observed from Figure
11 that in case of GAs the computational time increases linearly with the number of generations, whereas for PSA the computational
time increases almost exponentially with the number of generations. The higher computational time for PSA is due to the communication
between the particles after each generation. Hence as the number of generations increases, the computational time increases almost
exponentially.

Table 9 presents the sizes for the units involving a set of discrete equipment structure given by PSA. The inconvenience of this
configuration is just stopped at 6000 hours with risk of failing to fulfill the potential future demand coming from a fluctuation changing
of the market.

On the other hand, the calculation of the structure of equipment using GA is illustrated in Table 10. The total production time, also,
computed by GA is 5491.12 hours to fulfill the eventual increase of future demand caused by market fluctuation. In addition, the GA
results in a faster convergence. However, the equipment structure showed by PSA is very expensive. Furthermore, the PSA approach
has the disadvantage of long CPU time.

At the same time as, the GA allow the reduction of the idle time to the stage, in any way, Table 11 and Table 12 show the idle times
obtained by PSA and GA respectively.

Unit

Product | 2 3 4 5 6 7 8

Insulin 0 0 NA NA 0 57.7 NA 67.11

Vaccine 0 54 0 0 60.79 57.7 229 67.11
Chymosin |0 17 NA NA 17.54 57.7 279 67.11

Protease 0 63 16 15 63.07 57.7 55.03 67.11

Table 11: Idle times in plant calculated by PSA (seconds).
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Unit

Product 1 2 3 4 5 6 7 8
Insulin 0 0 NA NA 0.01 0 0
Vaccine |0 1193 004 [0 1291 |0 1017 |0
Chymosin |0 0.01 NA NA 0 0 0.31 0.17
Protease 0 2.09 0 0 3.07 0 0.5 0

Table 12: Idle times in plant calculated by GA (seconds).

However, some observations about some important aspects in our implication of GAs and some problems in practice: the most
important of all is the method of coding, because the codification is very important issue when a genetic algorithm is designed to dealing
with combinatorial problem, also of the characteristics and inner structure of the DMBP.

The commonly adopter concatenated, multi-paramer, mapped, fixed point coding are not effective in searching for the global
optimum. According to the inner structure of the design problem of multiproduct batch that gives us some clues for designing the
above mixed continuous discrete coding method with a four-point crossover operator. As is evident from the results of application, this
coding method is well fit for the proposed problem. Another aspect that affects the effectiveness of our Genetic Algorithms procedure
considerably is crossover.

Corresponding to the proposed coding method, we adopted a four-point crossover. It is commonly believed that multipoint
crossover is more effective than the traditional one-point crossover method. It is also important to note that the selection of crossover
points as well as the way to carry out the crossover should take in account the bit string structure, as is the case in our codification.

One problem in practice is the premature loss of diversity in the population, which results in premature convergence, because
premature convergence is so often the case in the implementation of GA according to our calculation experience. Our experience makes
it clear that the Elitism parameter can solve the premature problem effectively and conveniently. However, a numerical calculation of
the model under machine learning approach is examined in table 13.

Efficiency results Symbol Machine Learning Algorithms 1 | Machine Learning Algorithms 2
Production rate P 70000 55000
Annual demand rate D 50000 30000
Setup cost K 100 70
Holding cost H 5 4
Variable cost C 25 20
Selling price S 50 40
Inspection rate X 100000 60000
Return cost R 15 10
Penalty cost Pi 7 5
Screening cost 1 0.5 0.03

Table 13: Comparison of the machine learning algorithms.

In order to further explain the effects of these algorithms on solving the MBPD problem, the variance analysis was performed.
Each of the PSA and GA algorithms was run 30 times. The Minitab software was used to analyze the results. Therefore, the results are
given in table 14 and 15.
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95% confidence interval
Algorithm N Avg SD Standard of mean Min Max
error
Min Max
PSA 30 1859.0000 8.48935 2.68743 1833.9205 1845.0795 1828 1857
GA 30 1838.0000 5.49936 2.08701 1828.2733 1837.7201 1828 1845
Table 14: The results of two algorithms solving MBPD problem.
Quadratic sum Free degree Mean F Significance
g Square g
SDB 2339.676 3 779.895 15.455 0.000
SDI 1814.100 36 50.392 - -
SUM 4154.775 39 - - -
Table 15: Variance analysis result of MBPD problem.
Table 14 indicates that, the mean square deviation between ~ Acknowledgements

groups (SDB) is 779.895. The mean square deviation within groups
(SDI) is 50.392. The test statistic F = 15.477. If significance level a
=0.05, then the critical value

2.92< F (3.36)<2.84. Thus, F> F (3.36) indicating that the
difference between the average figures is significant, that is, the
performance difference of algorithms is significant.

Nevertheless, these techniques are not a panacea, despite
their apparent robustness, there are control “parameters” involved
in these metaheuristics and appropriate setting of these parameters
is a key point for success.

Conclusions

Techniques such as PSA and GA are inspired by nature, and
have proved themselves to be effective solutions to optimization
problems. We applied Genetic Algorithms with an effective mixed
continues discrete coding method with a four crossover point to
solve the problem of DMBP. GA perform effectively and give a
solution within 0.5% of the global optimum. Whilst, it is observed
that, in terms of computational time, the GAs approach is faster.
The computational time increases linearly with the number of
generations for GA, whereas for PSA the computational time
increases almost exponentially with the number of generations,
interpreting that, the higher computational time for PSA is due to
the communication between the particles after each generation.
Furthermore, the results provided by GA are much better with
respect to PSA. In this paper, the GA gave us the highest efficiency
and justifies its use for solving nonlinear mathematical models.
Therefore, this work provides an interesting decision/making
approach to improve the design of multiproduct batch plants under
conflicting goals.
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