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Abstract
The problem of optimization of Multiproduct Batch Plant Design (MBPD) in chemical engineering systems where the 

design variables are the size of the equipment elements and the setting of operating conditions. The application is a multiproduct 
batch plant for the manufacture of four recombinant proteins as insulin, chymosin, vaccine and protease. However, addressing 
an important class of optimization problems handed over the serious combinatorial aspect of the complication. The procedure 
implemented consists in using machine learning algorithms, in order to minimize the investment cost and find out the number 
and size of parallel equipment units in each stage. The calculation results (investment cost, number and size of equipment, com-
putational time, CPU time, idle times in plant, production rate, annual demand rate, setup cost, holding cost, variable cost, selling 
price, inspection rate, return cost, penalty cost, screening cost) obtained by metaheuristics machine learning tools are better than 
mixed integer no linear programming. This approach can facilitate the manufacturers of pharmaceutical drug to get an optimal 
design and makes up a remarkably suggested plan for having a benefit of efficient results.

Keywords: Batch Plant Design; Chemical Engineering 
Optimization; Machine Learning Algorithms; Mathematical 
Modeling

Introduction
Pharmaceutical researchers and biotechnology companies 

are devoted to developing medicines, such as: therapeutic proteins, 
human insulin, vaccines for hepatitis, food grade protein, chymosin 
detergent enzyme, and cryophilic protease. This allows patients 
to live longer, heathier, and more productive. Within this context, 
there is a high degree of consensus in the biomanufacturing 
industry that product quality, customer service, and cost efficiency 
are fundamental for success. The pharmaceutical industry must 
join its effort with government and the health professions to seek 
new, innovative, and cost effective approaches in the development 
process. However, the pharmaceutical process is characterized 
by a membership function involved in the field of chemical 
engineering. 

Nevertheless, for understanding a chemical engineering 
system, we have to go back to the mathematical modeling, 
as we know the mathematical modeling is a powerful tool to 

solve different problems which arise in chemical engineering 
optimization. Problems as designing a plant, determining the 
number of units for a specific task, assigning raw materials to 
different production processes and deciding the production planning 
or production targets are some of the issues that can be solved 
through mathematical modeling. In other words, the mathematical 
formulations are used to make decisions at different levels, from 
the synthesis and design of the process up to its operation and 
scheduling [1]. In spite of that, precisely in recent years, there 
has been an increased interest development of systematic method 
for the design of batch process in chemicals, food products, and 
pharmaceutical industries. Basically, batch plants are composed of 
items operating in a discontinuous way. Each batch then visits a 
fixed number of equipment items, as required by a given synthesis 
sequence so called production recipe. That means, the design of 
batch plants requires involving how equipment may be utilized. 
In addition, the optimal design of a multiproduct batch chemical 
process involves the production requirement of each product 
and the total production time available for all products has been 
considered. The number and size of parallel equipment units in 
each stage as well as the location and size of intermediate storage 
are to be determined in order to minimize the investment cost.
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Many works in the literature on batch process design are based 
on expressions that relate the batch sizes linearly with the equipment 
sizes [2], made a comprehensive framework for optimal design 
of batch plants. Dietz, Azzaro-Pantel, Pibouleau & Domenech 
[3], developed an approach of multiobjective optimization for 
multiproduct batch plant design under economic and environmental 
considerations. Ponsich, Azzaro-Pantel, Domenech & Pibouleau, 
illustrated some guidelines for genetic algorithms implementation 
in MINLP batch plant design problem [4]. Dietz, Aguilar-Lasserre, 
Azzaro-Pantel, Pibouleau & Domenech, presented of fuzzy 
multiobjective algorithm for multiproduct batch plant [5]. In 
addition, they’ve used genetic algorithms to solve multiobjective 
optimization problem with an application to optimal batch plant 
design in process system engineering. Aguilar-Lasserre, Bautista 
Bautista, Ponsich & González Huerta, developed an AHP-based 
decision making tool for the solution of multiproduct batch plant 
design problem under imprecise demand [6]. Aguilar-Lasserre, 
Giner, Azzaro-Pantel, Guillermo, Constantino, Pibouleau & Rubén, 
illustrated the problem of the optimal design of batch plants with 
imprecise demands using concepts of fuzzy logic [7]. Borisenko, 
Kegel & Gorlatch, developed and performed a parallel algorithm 
for finding optimal design for multiproduct batch plants [8].

In the conventional optimal design of a multiproduct batch 
chemical plant [9], a designer specifies the production requirements 
for each product and total production time for all products [10]. 
The number required of volume and size of parallel equipment 
units in each stage is to be determined in order to minimize the 
investment cost.

The case of study is a multiproduct batch plant for the 
production of proteins taken from the literature, we will only 
consider multiproduct batch plants, which means that all the 
products follow the same operating steps [11,12], the structure 
of the variables are the equipment sizes and number of each unit 
operation that generally take discrete values. Generally, optimization 
of multiple parameters is an arduous and time consuming task. In 
this context, we emphasize referring to the work of Montagna, 
et al. [13], and Asenjo, et al. [14] about the strategy based on 
monoproduct campaigns was assumed, even when considering 
the design of multiproduct batch plant. Therefore, machine 
learning applications are everywhere, from self-driving cars, spam 
detection, document search, trading strategies, and even speech 
recognition. This makes machine learning suitable for the era of 
big data era and data science, especially in pharmaceutical and 
pharmacological sciences. The main challenge is how to convert 
data to see what is possible. 

The aim of this work is to solve the multiproduct batch plant 
design problem using (PSA) and (GAs), respectively. The model 

presented is general, it takes into account all the available options 
to increase the efficiency of the batch plant design: unit duplication 
in-phase and out-phase and intermediate storage tanks. 

We have found out that PSA performs effectively and gives a 
solution, but we would like to solve the problem more effectively, 
that’s why we proposed to apply GAs, an intelligent problem-
solving method that has demonstrated its effectiveness in solving 
combinatorial optimization problem, and satisfactory results are 
obtained [15].

The paper is organized as follows, section 2 is devoted to 
the materials and methods including the system description and 
experimental data, problem statement, model equations and the 
methodology. While, the results and discussions are handling and 
reported in section 3. Finally, the conclusions of this work are 
drawn. 

Materials and Methods
System Description and Experimental Data

The case study, taken from the literature, is a multiproduct 
batch plant for the production of proteins [16]. This example is 
used as a test bench since it provides models describing the unit 
operations involved in the process. The batch plant involves eight 
stages for producing four recombinant proteins, on one hand, two 
therapeutic proteins, human insulin (A) and vaccine for hepatitis 
(B) and, on the other hand, a food grade protein, chymosin (C), 
and a detergent enzyme, cryophilic protease (D). Figure 1 is the 
flowsheet of the multiproduct batch plant considered in this study.

All the proteins are produced as cells grow in the fermenter. 
It is hardly necessary to say that the number of intermediate storage 
tanks is an important constituent of our process: Three tanks have 
been selected: the first after the fermenter, the second after the first 
ultrafilter, and the third after the second ultrafilter.

Vaccines and protease are considered to be intracellular. The 
first microfilter is used to concentrate the cell suspension, which is 
then sent to the homogenizer for the second microfilter, which is 
used to remove the cell debris from the solution proteins. The first 
ultrafiltration step is designed to concentrate the solution in order to 
minimize the extractor volume. In the liquid–liquid extractor, salt 
concentration (NaCl) is used as solution in order to minimize the 
extractor volume. In the liquid–liquid extractor, salt concentration 
(NaCl) is used to first drive the product to a Poly-Ethylene-Glycol 
(PEG) phase and again into an aqueous saline solution in the back 
extraction. The second ultrafiltration is used again to concentrate 
the solution. The last stage is chromatography, during which 
selective binding is used to better separate the product of interest 
from the other proteins.



Citation: Hamzaoui YE (2020) Understanding Machine Learning Algorithms into Multiproduct Batch Plant Design of Protein Production. J Pharma Pharma Sci: 4: 184. 
DOI: 10.29011/2574-7711.100084

3 Volume 04; Issue 01

J Pharma Phamra Sci, an open access journal
ISSN: 2474-7711

Figure 1: Multiproduct batch plant for protein production.

Insulin and chymosin are extracellular products. Proteins are separated from the cells in the first microfilter, where cells and 
some of the supernatant liquid stay behind. To reduce the amount of valuable products lost in the retentate, extra water is added to the 
cell suspension. The homogenizer and the second microfilter for cell debris removal are not used when the product is extracellular. 
Nevertheless, the first ultrafilter is necessary to concentrate the dilute solution prior to extraction. The final step of extraction, second 
ultrafiltration, and chromatography are common to both the extracellular and intracellular products. In Table 1 we make an estimation of 
production targets and product prices [17-19].

Table 1: Product prices and demands.

Problem Statement

The model formulation for DMBP’s problem approach adopted in this section is based on Montagna, et al. [16]. It considers not 
only treatment in batch steps, which usually appear in all types of formulation, but also represents semi continuous units that are part 
of the whole process (pumps, heat exchangers, etc). A semi-continuous unit is defined as a continuous unit alternating idle times and 
normal activity periods. Besides, this formulation takes into account mid-term intermediate storage tanks, the obligatory mass balance 
at the intermediate storage stage, which is one of the most efficient strategies to decouple bottlenecks in batch plant design. They are 
just used to divide the whole process into subprocesses in order to store an amount of materials corresponding to the difference of each 
sub-process productivity. In this section we describe the unit models from a conceptual standpoint and also the procedure to derive the 
data needed for solving the mathematical model. These data are summarized in Tables 2 and 3. 

Table 2: Size factors Sij (r, retentate; p, permeate).
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Table 3: Time factors Tij [Bi (kg)].
Most of the separation processes information are taken from Asenjo and Patrick [20], the posynomial modeling approach is taken 

from Salomone and Iribarren [21]. The general batch process literature as reported by Biegler, et al. [22], describes batch stages j through 
a sizing equation and a cycle time that are applied for a product i as follows:

Vj≥ SijBi                                                           (1)

Where Vj is the size of stage j, e.g., m3 of the vessel, Bi is the batch size for product i, e.g., kg of product exiting from the last stage, 
Sij is the size factor of stage j product i, i.e., the size needed at stage j

 
to produce 1kg of final product i and Tij is the time required to 

process a batch of product I in stage j
 
considering the fermentor and the insulin product as an example. If we estimate a final concentration 

of 50kg dry biomass/m3, that 0.4 of this biomass is proteins and 0.05 of these proteins is insulin, and an overall yield estimate of the 
process of 0.8 (0.8 of the insulin produced in the fermenter exits the chromatographic column), then the size factor for the fermenter for 
producing insulin can be estimate as

Similarly, vaccine, chymosine, and cryophilic protease were estimated to be 0.1, 0.15, and 0.2 of total proteins of the biomass, 
respectively. The batch stage description is completed by estimating a processing time Tij

 

for stage j when producing product i. For the 
fermenter, we estimate Tij=24hrs for all products, which includes time for charging, cell growth, and discharging.

This model of batch stages given by constraint (1a) is the simplest one. Its level of detail suffices for the fermenter and the 
extractor. These units are truly batch items chat hold the load to be processed and whose operations are governed by kinetics, and hence, 
the operating time does not depend on the batch size.

As a first approximation for the extractor, we take a phase ratio of (1b) for all products. Therefore, the required extractor volume is 
twice the inlet batch volume, while the inlet and outlet aqueous saline batches are of the same volume. It is also assumed, as a result of 
preliminary balances, that this operation reduces the total amount of proteins to about twice the amount of the target protein. With respect 
to the kinetic effects we take as first estimates [23] the following times: 15 min stirring to approach phase equilibrium, 30 min settling 
to get almost complete disengaging of the phases, and 20 min for charging and discharging. A special consideration must be done in the 
case of the microfiltration, homogenization, and ultrafiltration stages. Although the mathematical model considers them batch stages, 
their corresponding equipment consists of holding vessels and semicontinous units that operate on the material that is recirculated into 
the holding vessel. The batch items are sized as described before. For example, for the homogenizer processing cryophilic protease, 
we estimated that the fermentor broth is concentrated 4 times up to 200kg/m3 at microfilter 1 and considered a yield of 1 because 
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the intracellular protease is fully retained at the microfilter. Then 
the size factor of the homogenizer vessel is 4 times smaller than 
the fermenters, i.e., Sij=0.08m3/kg protease. The sizing equation 
for semicontinuous items can also be found in the general batch 
processes literature [24]:

Where Rj is the size of the semicontinuous item k, usually a 
rate of processing. For example, in the case of the homogenizer, it 
is the capacity in cubic meters of suspension per hour, but in the 
case of the filters Rj 

is their area of filtration Aj(m
2). Bj is again the 

batch size, θij is the operating time that the semicontinuous item j 
needs to process a batch of product i, and Dij is the duty factor (a 
size factor for semicontinuous items), i.e., the size needed at stage 
j to process 1 kg of product i in 1 h. For example, if we adopt three 
passes through the homogenizer, its duty factor is the vessel size 
factor 0.08m3/kg, i.e. Dij=0.24m3/kg The meaning of a capacity of 
0.24m3/h

 
is that it allows 1kg of final product cryophilic protease 

to be processed in 1hr.

The general batch processes literature considers 
semicontinuous units to work in series with batch units so that 
their operating time are the times for filling or emptying the batch 
units. However, in the process considered, pumps are the only 
semicontinuous units, which transfer batches between the units. As 
the pumps cost does not have a relevant impact on the plant design, 
they were not explicitly modeled. The times for filling and emptying 
batch items were estimated and included in the batch cycle times. 
On the other hand, the process does have special semicontinuous 
units with an important economic impact on the cost. They are the 
homogenizer and ultrafilters, but their operating time is the batch 
processing time of the respective stage. Their mathematical model 
has been introduced by Salomone and Iribarren, 1994. A size factor 
for the batch item and a time expression for the stage that depends 
on both the batch size and the size of the semicontinuous item are 
as follows:

Where Rj refers to the size of the semicontinuous item that 

operates on the batch size at stage j. 0
ijT

 
and 1

ijT
 
are appropriate 

time factors that take into account contributions to the total 
cycle time of the stage that are either fixed amounts of time or 
proportional to the batch size and inversely proportional to the size 

of the semicontinuous item. For the homogenizer, Rj is its capacity, 
1

ijT
 
the duty factor of the homogenizer itself, and 0

ijT includes the 
estimated times for filling and emptying the homogenizer holding 
vessel. In the case of ultrafilters, a fixed permeate flux model was 
considered with a rate of 20ml/m2 of membrane area/h. In this 
case, the size of the semicontinuous item Rj is the filtration area. 

0
ijT is again the time for filling and emptying the retentate holding 

vessel, and 1
ijT is the inverse of the permeate flux times the ratio 

(m3permeate/kg). 

This ratio is estimated from a mass balance taking into account 
that the ultrafilters are used for a water removal from solutions 
up to 50kg/L of total proteins. Ultrafilters are used to reduce the 
volume required at the liquid extractor and the chromatographic 
column. The upper bound on concentration is a constraint that 
avoids protein precipitation. The microfilter model is quite similar 
to that of the ultrafilter, but there are two batch items associated to 
them instead of one, the retentate and the permeate vessels, plus 
the semicontinuous item area of filtration. For microfilter 1 a fixed 
permeate flux of 200L/m2h is adopted. For extracellular insulin and 
chymosin, we estimate a total permeate (feedwater plus make up 
water) twice the feed, while for intracellular protease and vaccine 
we estimate it in 75% of the feed (the retentate is concentrated four 
times). For microfilter 2 a fixed permeate flux model is also used. 
In this case, the flux is smaller than the one in microfilter 1 because 
the pore size to retain cell debris is smaller than the one for whole 
cells. As a first estimation we take 100L/m2h and a total permeate 
(feed plus make up water) twice the feed. With respect to the 
chromatographic column, an adsorptive type chromatography is 
considered, with a binding capacity of 20kg/m3 of column packing. 
The size factor of this unit is the inverse of that binding capacity. 
As a first approximation, a fixed total operating time of 0.5h was 
estimated for loading, eluting, and washing regeneration.

Finally, the stage model is completed with a cost model that 
expresses the cost of each unit as a function of its size, in the form 
of a power law. These expressions are summarized in Table 4, with 
most of the cost data taken from Petrides, et al. [19].

Table 4: Cost of equipment (U.S.dollars).

Model Equations 

The mathematical optimization model for designing the 
multiproduct batch plant is described in this section. The model 



Citation: Hamzaoui YE (2020) Understanding Machine Learning Algorithms into Multiproduct Batch Plant Design of Protein Production. J Pharma Pharma Sci: 4: 184. 
DOI: 10.29011/2574-7711.100084

6 Volume 04; Issue 01

J Pharma Phamra Sci, an open access journal
ISSN: 2474-7711

includes the stage models described in the previous section plus 
additional constraints that are explained in this section. The plant 
consists of M batch stages (in our case 8 batch stages). Each 
stage j

 
has a size Vj(m

3), and more than one unit can be installed 
in parallel. They can work either in-phase (starting operation 
simultaneously) or out of phase (starting times are distributed 
equally spaced between them). The duplication in phase is adopted 
in case the required stage size exceeds the specific upper bound. 
In this case Gj units are selected, splitting the incoming batch into 
Gj smaller batches, which are processed simultaneously by the Gj 
units. After processing, the batches are added again into a unique 
outgoing batch. Otherwise, duplication out-of-phase is used for 
time-limiting stages, if a stage has the largest processing time, 
then it is a bottleneck for the production rate. Assigning Mj units 
at this stage, working in out of phase mode, reduces the limiting 
processing time and thus increases the production rate of the train. 
For this case, the batches coming from the upstream stages are not 
split. Instead, successive batches produced by the upstream stage 
are received by different units of stage j, which in turn pass them 
at equally spaced times onto the downstream batch stage. The 
allocation and sizing of intermediate storage has been included 
in the model to get a more efficient plant design. The goal is to 
increase unit utilization. The insertion of a storage tank decouples 
the process into two subprocesses: one upstream from the tank, 
and the other downstream. This allows the adoption of independent 
batch sizes and limiting cycle times for each subprocess. 

Therefore, the previously unique Bi is changed to batch sizes 
Bij defined for product i in stage j. Appropriate constraints adjust the 
batch sizes among different units. The objective is to minimize the 
capital cost of the plant. The decision variables in the model are as 
follows: At each batch stage the number of parallel units in phase 
and out of phase and their size, and the installation or absence of 
intermediate storage between the batch stages and their size. The 
plant is designed to satisfy a demand of Qi(kg) of each product i, 
for the P product considered, within a time horizon H(h). 

In summary, the objective function to be optimized is

Where αj and αj, Cj and nj are appropriate cost coefficients that 
depend on the type of equipment being considered. VTj is the size 
of the storage tank allocated after stage j. The size of each unit has 
to be large enough to be able to process every product:

Where Sij is the size factor for product i in stage j. In case of 

parallel units working in phase, the division of Bij by the number 
of units Gj 

takes into account the reduction in the batch size to be 
processed by these units. The operation time Tij to process product 
i at stage j has the general following form:

Where 0

ij
T and 1

ij
T are appropriate constants that depend 

on both the product and the stage. Expression 7 accounts for a 
fixed and variable contribution to the total operating time. The last 
term in Eq 7 depends on both the batch size and the size of the 
semicontinuous item associated to this batch stage, as was already 
discussed previousely.

The limiting cycle time for product i in the subprocess h, 
TLh, is the largest processing time in this production train:

Where Jh is the set of units which conform the subprocess 
h the division by the number of units in parallel working out of 
phase, Mj takes into account the reduction in the cycle time of this 
stage due to the operation of Mj units that alternatively process 
the consecutive batches. To avoid accumulation of material, the 
processing rate of both subprocess downstream and upstream of 
the storage tank must be the same:

The constraints 9 equalizes the production rate upstream and 
downstream of the storage tank. To express 9 in a simple form, the 
inverse of the production rate of product i(Ei), is defined as

Expression 10 is used to replace n
iTL in constraint 8, dropping 

constraint 9. The production constraint is posed as follows: during 
the time horizon H the plant must produce the target production 
quantities Qi of each product i. The number of batches of each 

product i to be produced during time H is 
i

i

B
Q , and the production of 

each batch demands a time TLi, The following constraints holds:
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The size of the storage tank VTj, allocated after batch stage j , is given by the following expression [25]:

Where STij is the size factor corresponding to the intermediate storage tank, with identical definition to the batch stages. As no a 
priori tank allocation is given, binary variables yj are used to select their allocation. The value of variables yj is 1 if a tank is placed in 
position j, or zero otherwise. Constraint 12 is generalized to size the tank only if it exits:

Where Fj is a constant value sufficiently large such that when yj is 0 (the tank does not exist), the constraint is trivially satisfied 
for any value of VTj. 

In particular, the cost minimization will drive VTj=0. When the tank exists (yj=1) the term with Fj vanishes, and the original 
constraint (12) holds. If the storage tank does not exist between two consecutive stages, then their batch sizes are constrained to be equal. 
Otherwise, this constraint is relaxed. This effect is imposed by the following constraints [26]:

Where Ф is a constant value corresponding to the maximum ratio allowed between two consecutive batch sizes.

In summary, the multiproduct plant design model that includes the options of parallel units in-phase and/or out of phase and 
provision of intermediate storage, consists of the objective function 5 subject to constraints 6, 8, 11, 13, and 14, plus the upper and 
lower bounds that may apply. An important feature of the model is that both the objective function and the constraints are posynomial 
expressions that possess a unique local (and thus, global) solution [27]. This basic model has been adapted to handle the particular feature 
of the composite stages (homogenizer, ultrafilters, and microfilters). In this case, constraint 6 is applied not to a general batch stage size 
but to each of the items that compose it. So in the case of microfilters, constraint 6 applies to both the retentate and the permeate vessels. 
A new parameter SRij was introduced to represent the size factor of the retentate vessel, while Sij was left for the permeate vessel. Also 
in this case, the objective function must account for all the stage components. The notation αj and αi were left for the cost coefficients 

of the permeate vessel, bj and βj 
for the retentate vessel, and dj and jg

 
for the filtration area. A similar approach was implemented for the 

ultrafilters (retentate vessel and ultrafiltration area) and homogenizer (holding vessel and the homogenizer itself).

Methodology
Between 1960s and 1970s witnessed a tremendous development in the size and complexity of industrial organizations. 

Administrative decision-making has become very complex and involves large numbers of workers, materials and equipment. A decision 
is a recommendation for the best design or operation in a given system or process engineering, so as to minimize the costs or maximize 
the gains [28]. Using the term “best” implies that there is a choice or set of alternative strategies of action to make decisions. The 
term optimal is usually used to denote the maximum or minimum of the objective function and the overall process of maximizing or 
minimizing is called optimization. The optimization problems are not only in the design of industrial systems and services, but also apply 
in the manufacturing and operation of these systems once they are designed. Including various methods of optimization, we can mention: 
MINLP, Particle Swarm Optimization and Genetics Algorithms.
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Particle Swarm Algorithms

The PSA is a population-based optimization algorithm, 
which was inspired by the social behavior of animals such as 
fish schooling and birds flocking, it can solve a variety of hard 
optimization problems. It can handle constrains with mixed 
variables requiring only a few parameters to be tuned, making 
it attractive from an implementation viewpoint [29]. In PSA, 
its population is called a swarm and each individual is called a 
particle. Each particle flies through the problem space to search 
for optima. Each particle represents a potential solution of solution 
space; all particles form a swarm. The best position passed through 
by a flying particle is the optimal solution of this particle and is 
called pbest, and the best position passed through by a swarm is 
considered as optimal solution of the global and is called gbest. 
Each particle updates itself by pbest and gbest. A new generation is 
produced by this updating. The quality of a particle is evaluated by 
value the adaptability of an optimal function. In PSA, each particle 
can be regard as a point of solution space. Assume the number 
of particles in a group is M, and the dimension of variable of a 
particle is N. The ith particle at iteration k has the following two 
attributes:

(1) A current position in an N-dimensional search space which 
represents a potential solution: ( )k

Ni
k

ni
k
i

k
i xxxX ,,1, ...,...= , where [ ]nn

k
ni ulx ,, ∈  is 

the nth dimensional variable, Nn ≤≤1 , ln and un are the lower and 
upper bounds for the nth dimension, respectively.

(2) A current velocity, ( )k
Ni

k
ni

k
i

k
i vvvV ,,1, ,...,...= , which controls its fly 

speed and direction. k
iV  is restricted to a maximum velocity 

( )k
N

k
n

kk vvvV max,max,1max,max ,...,...= . At each iteration, the swarm is uploaded by 
the following equations:

Where Pi is the best previous position of the ith particle (also 
known as pbest) and Pg is the global best position among all the 
particles in the swarm (also known as gbest). They are given by 
the following equations:

Where f is the objective function, M is the total number of 
particles. r1 and r2 are the elements generated from two uniform 
random sequences on the interval [0,1]: r1αU(0,1); r2αU(0,1)and 
ω is an inertia weight [30] which is typically chosen in the range 
of [0,1]. A larger inertia weight facilitates global exploration and 

a smaller inertia weight tends to facilitate local exploration to 
fine tune the current search area. There fore the inertia weight ω 
is critical for the PSO’s convergence behavior. A suitable value 
for the inertia weight ω usually provides balance between global 
and local exploration abilities and consequently results in a better 
optimum solution. Initially the inertia weight was kept constant. 
However, some literatures indicated that it is better to initially set 
the inertia to a large value, in order to promote global exploration 
of the search space, and gradually decrease it to get more refined 
solutions. C1 and C2 are acceleration constants which also control 
how far a particle will move in a single iteration.

Genetic Algorithms Approach

GA, proposed in this paper based on the work of Wang, 
et al. [30], are related to the mechanics of natural selection and 
natural genetics. They combine the survival of the fittest among 
string structures with a structured yet randomized information 
exchange to form search algorithms with some of the innovative 
flair of human search. In every generation, a new set of individuals 
(strings) is created using bits and pieces of the fittest of the old 
individuals; while randomized, a GA are no simple random walk. 
They efficiently exploit historical information to speculate on 
new search points with expected improved performance [30]. 
According to Wang, et al. [30], the canonical steps of the GA can 
be described as follows:

The problem to be addressed is defined and captured in (1)	
an objective function that indicated the fitness of any potential 
solution.

 A population of candidate solutions is initialized subject (2)	
to certain constraints. Typically, each trial solution is coded as a 
vector X , termed a chromosome, with elements being described 
as solutions represented by binary strings. The desired degree 
of precision would indicate the appropriate length of the binary 
coding.

 Each chromosome (3)	 Xi,i=1,2,….P, in the population is 
decoded into a form appropriate for evaluation and is then assigned 
a fitness score, µ(Xi) according to the objective.

(4) Selection in genetics algorithms is often accomplished via 
differential reproduction according to fitness. In a typical approach, 
each chromosome is assigned a probability of reproduction, 
Pi,i=1,2,….P , so that its likelihood of being selected is proportional 
to its fitness relative to the other chromosomes in the population. 
If the fitness of each chromosome is a strictly positive number to 
be maximized, this is often accomplished using roulette wheel 
selection (Goldberg, 1989). Successive trials are conducted in 
which a chromosome is selected, until all available positions are 
filled. Those chromosomes with above-average fitness will tend to 
generate more copies than those with below-average fitness.
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(5)    According to the assigned probabilities of reproduction, Pi,i=1,2,….P, a new population of chromosomes is generated by 
probabilistically selecting strings from the current population. The selected chromosomes generate “offspring” via the use of specific 
genetic operators, such as crossover and bit mutation. Crossover is applied to two chromosomes (parents) and creates two new 
chromosomes (offspring) by selecting a random position along the coding and splicing the section that appears before the selected 
position in the first string with the section that appears after the selected position in the second string and vice versa. Bit mutation simply 
offers the chance to flip each bit in the coding of a new solution. 

Table 5: The parameters used for running GA and PSA.

According to our experiments, the parameters used for running GA and PSA are showed in Table 5.

Statistical Analysis Methods 
The interest in statistical analysis methods has grown recently in the field of computational intelligence. In this section, I will discuss 
the basic and give a survey of a complete set of variance analysis procedures developed to perform the comparison between PSA and 
GA, via the use of describing a test of the null hypothesis, which applies to independent random samples from two normal populations 
of size  and  are taken from normal population having the same variance, it follows  distribution with  and  degrees 

of freedom, according to this equation: 

Results and Discussions
The problem could be formulated as the minimization of the investment cost for equipment and storage tanks. Given that the 

problem modeled has non linear objective function. For the purpose of optimization problem, the model developed has been solved with 
PSA and Gas Matlab Toolbox respectively, which is included in the Matlab optimization modeling software, using the data shown in 
Tables 1, 2, 3, 4. A horizon time of 6000 h has been considered.

Table 6: Intermediate storage cost coefficients and size factors.

Table 7 shows the best, the average and the worst among the final fitness values and the related standard deviation obtained in the 30 
runs of PSA and GA, respectively.
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Table 7: Comparison of results for 30 runs between PSA and GA.

It is clear from the summary of the results shown in Table 7, 
that the performance of both PSA and GA produce adequate values 
regarding the cost for equipment and storage tanks. However, GA 
performs better than the PSA in terms of the average and the worst 
fitness values and the standard deviation. Table 7, also, shows the 
best final solution found in the 30 runs of PSA and GA. According 
to our knowledge, the case study about the optimal design of 
protein production plant has been taken from Montagna, et al. [16]. 
However, they solved the problem using rigorous mathematical 
programing (MINLP), their model includes 104 binary variables 
and has been convexified using the transformation proposed by 
Kocis and Grossman. The MINLP model has been solved using 
DICOPT++, which is included in the GAMS optimization modeling 
software. The algorithm implemented in DICOPT++ relies on the 
Outer Approximation/Equality Relaxation/Augmented Penalty 
(OA/ER/AP) method. The OA/ER/AP solution method consists of 
the decomposition of the original MINLP problems into a sequence 
of two subproblems: a Non Linear Programming (NLP) subproblem 
and a Mixed Integer Linear Programming (MILP) subproblem also 
known as the Master problem, which is solved to global optimality 
(minimize the caplital cost $829,500). However, in previous work 
of Montagna, et al [16], their model needed a long computational 
time (more than 86400 seconds) and require several initial values 
to the optimization variables, they also showed in their paper that 
the behavior of the demand was completely deterministic. 

Whilst, this assumption does not seem to be always a 
reliable representation of the reality, since in practice the demand 
of pharmaceutical products resulting from the batch industry is 
usually variable. Simulations outcomes were then compared with 
experimental data in order to check the accuracy of the method. 
The error from the optimal solution is given by:

In this research, xexp is considered to be the optimal solution 
founded by Montagna (Plant cost $829,500), where the equation 
19 is a criterion to confirm the optimal values. Table 8 presents 
the results obtained in different optimization runs for multiproduct 
batch plant design. For each simulator run, the average numerical 
effort spent on solving the problem on LINUX System, Intel ® D, 
CPU2.80 Ghz, 2.99 of RAM. Table 8 shows plant cost, % from 
optimal solution and CPU time obtaining during 30 runs. PSA 
and GA performed effectively and give a solution within 10 and 
0.5% of the global optimal $912,450 and $833,647, respectively. 
Furthermore, the important feedback could be taken from Table 8, 
is the GA results in a faster convergence than PSA and the MINLP 
algorithm. In addition, the GA is so close to the global optimal 
of MBPD (0.5% from optimal solution) and provides also an 
interesting solution, in terms of quality as well as of computational 
time as illustrated in Table 8, while Table 9 presents the sizes for 
the units involving a set of discrete equipment structure given by 
PSA. The inconvenience of this configuration is just stopped at 
6000h with risk of failing to fulfill the potential future demand 
coming from a fluctuation of the market.

Table 8: Optimization runs results for the investment cost founded by PSA and GA during 30 runs.

Table 9: Equipment structure calculated by PSA.
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Table 10: Equipment structure calculated by GA.

In order to show how the evolution process is going on for both PSA and GAs, respectively, the convergence of the best fitness 
values is shown in Figure 1. The convergence rate of objective function values as a function of generations for both PSA and GAs is shown 
in Figure 1, where for clarity only 1000 generations are shown. It is clear from this figure that, for the optimization problem considered, 
GAs decrease rapidly and converge at a faster rate (around 500 generations) compared to that for PSA (about 800 generations), from 
which it is clear that GAs seem to perform better compared to PSA. So, for the present problem the performance of the GAs is better 
than PSA from an evolutionary point of view. 

To compare the computational time, the swarm/population size is fixed to 200 for both PSA and GAs algorithms. Whereas, the 
generation number is varied. Simulation were carried out and conducted on LINUX System, Intel (R) D, CPU 2.80 Ghz, 2.99 of RAM 
Computer, in the MATLAB 7.0.1 environment. Here the result in the form of graph is shown in Figure 1. It is clear from Figure 1 that 
the computational time for GAs is very low compared to the PSA optimization algorithm. Further, it can also be observed from Figure 
11 that in case of GAs the computational time increases linearly with the number of generations, whereas for PSA the computational 
time increases almost exponentially with the number of generations. The higher computational time for PSA is due to the communication 
between the particles after each generation. Hence as the number of generations increases, the computational time increases almost 
exponentially.

Table 9 presents the sizes for the units involving a set of discrete equipment structure given by PSA. The inconvenience of this 
configuration is just stopped at 6000 hours with risk of failing to fulfill the potential future demand coming from a fluctuation changing 
of the market.

On the other hand, the calculation of the structure of equipment using GA is illustrated in Table 10. The total production time, also, 
computed by GA is 5491.12 hours to fulfill the eventual increase of future demand caused by market fluctuation. In addition, the GA 
results in a faster convergence. However, the equipment structure showed by PSA is very expensive. Furthermore, the PSA approach 
has the disadvantage of long CPU time. 

At the same time as, the GA allow the reduction of the idle time to the stage, in any way, Table 11 and Table 12 show the idle times 
obtained by PSA and GA respectively.

Table 11: Idle times in plant calculated by PSA (seconds).
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Table 12: Idle times in plant calculated by GA (seconds).

However, some observations about some important aspects in our implication of GAs and some problems in practice: the most 
important of all is the method of coding, because the codification is very important issue when a genetic algorithm is designed to dealing 
with combinatorial problem, also of the characteristics and inner structure of the DMBP. 

The commonly adopter concatenated, multi-paramer, mapped, fixed point coding are not effective in searching for the global 
optimum. According to the inner structure of the design problem of multiproduct batch that gives us some clues for designing the 
above mixed continuous discrete coding method with a four-point crossover operator. As is evident from the results of application, this 
coding method is well fit for the proposed problem. Another aspect that affects the effectiveness of our Genetic Algorithms procedure 
considerably is crossover.

Corresponding to the proposed coding method, we adopted a four-point crossover. It is commonly believed that multipoint 
crossover is more effective than the traditional one-point crossover method. It is also important to note that the selection of crossover 
points as well as the way to carry out the crossover should take in account the bit string structure, as is the case in our codification.

One problem in practice is the premature loss of diversity in the population, which results in premature convergence, because 
premature convergence is so often the case in the implementation of GA according to our calculation experience. Our experience makes 
it clear that the Elitism parameter can solve the premature problem effectively and conveniently. However, a numerical calculation of 
the model under machine learning approach is examined in table 13.

Efficiency results Symbol Machine Learning Algorithms 1 Machine Learning Algorithms 2

Production rate P 70000 55000

Annual demand rate D 50000 30000

Setup cost K 100 70

Holding cost H 5 4

Variable cost C 25 20

Selling price S 50 40

Inspection rate X 100000 60000

Return cost R 15 10

Penalty cost Pi 7 5

Screening cost I 0.5 0.03

Table 13: Comparison of the machine learning algorithms.

In order to further explain the effects of these algorithms on solving the MBPD problem, the variance analysis was performed. 
Each of the PSA and GA algorithms was run 30 times. The Minitab software was used to analyze the results. Therefore, the results are 
given in table 14 and 15.
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Algorithm N Avg SD Standard
error

95% confidence interval 
of mean Min Max

Min Max

PSA 30 1859.0000 8.48935 2.68743 1833.9205 1845.0795 1828 1857

GA 30 1838.0000 5.49936 2.08701 1828.2733 1837.7201 1828 1845

 Table 14: The results of two algorithms solving MBPD problem.

Quadratic sum Free degree Mean
Square F Significance

SDB 2339.676 3 779.895 15.455 0.000

SDI 1814.100 36 50.392 - -

SUM 4154.775 39 - - -

Table 15: Variance analysis result of MBPD problem.

Table 14 indicates that, the mean square deviation between 
groups (SDB) is 779.895. The mean square deviation within groups 
(SDI) is 50.392. The test statistic F = 15.477. If significance level α 
= 0.05, then the critical value 

2.92≤ Fα(3.36)≤2.84. Thus, F> Fα(3.36) indicating that the 
difference between the average figures is significant, that is, the 
performance difference of algorithms is significant.

Nevertheless, these techniques are not a panacea, despite 
their apparent robustness, there are control “parameters” involved 
in these metaheuristics and appropriate setting of these parameters 
is a key point for success.

Conclusions
Techniques such as PSA and GA are inspired by nature, and 

have proved themselves to be effective solutions to optimization 
problems. We applied Genetic Algorithms with an effective mixed 
continues discrete coding method with a four crossover point to 
solve the problem of DMBP. GA perform effectively and give a 
solution within 0.5% of the global optimum. Whilst, it is observed 
that, in terms of computational time, the GAs approach is faster. 
The computational time increases linearly with the number of 
generations for GA, whereas for PSA the computational time 
increases almost exponentially with the number of generations, 
interpreting that, the higher computational time for PSA is due to 
the communication between the particles after each generation. 
Furthermore, the results provided by GA are much better with 
respect to PSA. In this paper, the GA gave us the highest efficiency 
and justifies its use for solving nonlinear mathematical models. 
Therefore, this work provides an interesting decision/making 
approach to improve the design of multiproduct batch plants under 
conflicting goals.
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