

Review Article

5 α -Reductase Inhibitors in the Treatment of Benign Prostatic Hyperplasia: A Review

Alok Nahata*

Ying Zhi Agricultural and Industries Sdn Bhd, Malaysia

***Corresponding author:** Alok Nahata, Research and Development Manager, Ying Zhi Agricultural and Industries Sdn Bhd, Jitra 06000, Kedah Darulaman, Malaysia. Tel: +6049163846; Email: aloknahata@gmail.com

Citation: Nahata A (2017) 5 α -Reductase Inhibitors in the Treatment of Benign Prostatic Hyperplasia: A Review. J Urol Ren Dis: JURD-153. DOI: 10.29011/2575-7903.000053

Received Date: 18 August, 2017; **Accepted Date:** 24 August, 2017; **Published Date:** 31 August, 2017

Abstract

Prostate Cancer and Prostatic diseases have become the major causes of concern to elderly men almost in every part of the world. One of the major problems faced by most of the aging men is Benign Prostatic Hyperplasia (BPH). There are varieties of treatments available but no of them have proved to be up to the mark. Most of the synthetic molecules suffer from the drawback of substantial side effects. The enzyme 5 α -reductase has been found to be the major factor which plays an important role in the progression of the disease as it is the mediator in the conversion of testosterone to the more harmful dihydrotestosterone. The inhibition of this conversion can help prevent BPH. Present review is an effort to list the studies undertaken on 5 α -reductase inhibitors from synthetic and natural origin and the results obtained thereof. This could provide a substantial lead to further research in this area and help in the treatment of BPH.

Keywords: 5 α -reductase; Benign Prostatic Hyperplasia; Finasteride; *Ganoderma lucidum*; Prostate disorders; Testosterone

Background

Benign Prostatic Hyperplasia (BPH) has the pathogenesis of an androgen dependent disorder and afflicts a large population of elderly men with chronobiologic progress. BPH does not occur in men castrated prior to puberty, and in a variety of medical conditions whereby testosterone production or function is inhibited, the prostate does not develop normally. In addition, hypogonadal men do not become bald, and hair loss can be induced by testosterone administration to these individuals. Androgens, particularly 5 α -Dihydrotestosterone (DHT), are required to maintain the size and function of the prostate in men and are thought to play a major role in the pathogenesis of BPH, prostate cancer, acne and androgenetic alopecia. Because DHT is produced from Testosterone (T) by 5 α -reductase (5 α -R), this enzyme plays a key role in DHT- mediated effects of BPH and androgenetic alopecia. Androgens are believed to act on the hair follicle via the mesenchyme-derived dermal papilla situated in the middle of the hair follicle bulb. The individuals with

autosomal recessive genetic disorder of 5 α -R deficiencies do not exhibit androgenetic alopecia, suggesting that DHT is the active androgen in the development of hair loss. The normal growth and secretory activities of the prostate are controlled by androgens, especially by DHT. These observations lead to the development of 5 α -R inhibitors like finasteride, which lowers DHT concentration in the prostate without increasing circulating testosterone levels.

The NADPH dependent membrane bound enzyme 5 α -R catalyses reduction of the 4-5 double bonds in a variety of steroids. Although the enzyme has both catabolic and anabolic functions, the primary and interesting function is anabolic, i.e. the conversion of T to the more potent androgen 5 α -DHT. Studies of 5 α -R have been facilitated by the modification of cDNA's coding for the enzyme [1]. Inhibition of 5 α -R and limiting DHT production provides a useful approach to androgen deprivation, which may be a useful treatment for 5 α -R activity disorders. Any such product that limits local DHT production could be a potential therapeutic agent. Also, an anti-androgen, which specifically blocks 5 α -R activities without binding to androgen receptor, would attenuate the action of testosterone.

Types of 5 α -Reductase Enzymes

Two isoforms of 5 α -R exist, namely type 1 and type 2, which are characterized by distinct molecular genetics, structural and biochemical properties and by different tissue localization. Type 2 isoforms are found predominantly in the prostate, genital skin, seminal vesicles and in the dermal papilla, while type 1 isoforms occur predominantly in non-genital skin, the scalp, the sebaceous gland, the liver and the brain. Type 2 5 α -R is expressed in scalp skin for a short period after birth. Both isoforms are expressed at a much lower level in other peripheral tissues, including skeletal muscle and pituitary. Due to the tissue specific expression of 5 α -R, prostatic DHT concentration is much higher than prostatic testosterone concentration [2].

Moreover, other important information on the role of the two 5 α -R isoforms in the pathogenesis of DHT-related disorders comes from the clinical evidences of 5 α -R 2 deficiency. Male pseudohermaphroditism, in which total or partial deficiency of 5 α -R 2 has been found, demonstrates that the type 2 isoforms are essential for differentiation of male external genitalia during fetal life. In these individuals, the prostate remains undeveloped, facial and body hair growth patterns are more feminine in character, and temporal regression of the hairline is significantly reduced, sebum production rate is instead unchanged with respect to normal individuals indicating that 5 α -R 2 is involved in prostate diseases and to some extent in AGA but probably not in acne [3]. For this reason, the development of isoforms specific inhibitors became an important pharmacological target for the treatment of DHT related pathologies.

Mechanism of Androgen Action in BPH

Androgens (Testosterone and related hormones) are considered to play a permissive role in BPH. This means that androgens have to be present for BPH to occur, but do not necessarily directly cause the condition. This is supported by the fact that castrated boys do not develop BPH when they age, unlike intact men. Additionally, administering exogenous testosterone is not associated with a significant increase in the risk of BPH symptoms. Dihydrotestosterone (DHT) is a critical mediator of prostatic growth. DHT is synthesized in the prostate from circulating testosterone. DHT is localized principally in the stromal cells. Once synthesized, DHT can act in an autocrine fashion on the stromal cells or in paracrine fashion by diffusing into nearby epithelial cell. In both of these cell types DHT bind to nuclear and androgen receptors and signals the transcription of growth factors that are mitogenic to the epithelial and stromal cells. The importance of DHT in causing nodular hyperplasia is supported by clinical observations in which an inhibitor of 5 α -R is given to men with this condition. Therapy with 5 α -R inhibitor markedly reduces the DHT content of the prostate and in turn reduces prostate volume and in many cases, BPH symptoms [4].

5 α -Reductase Inhibitors

The inhibitors of 5 α -reductase isozymes (Type 1 and Type 2) can be schematically divided into three groups according to their substrate specificity.

1. Pure or preferential inhibitor of 5 α -R type 1, e.g. *Angelica koreana* methanolic extract. The 5 α -R type 1 inhibitors seem to be ideal drugs for treatment of acne and hirsutism.
2. Pure or preferential inhibitor of 5 α -R type 2, e.g. Finasteride, a selective 5 α -R type 2 inhibitor, used in the treatment of AGA and BPH, and
3. Dual inhibitors or non-selective inhibitors e.g. Dutasteride, reduces the scalp DHT in bald men to a greater extent than Finasteride.

Most of the 5 α -R inhibitors are steroidal derivatives or compounds with steroid like structure, e.g. Finasteride, 4-azasteroid etc. The steroidal inhibitors have the possibility of an affinity for androgen receptors and expected to produce undesirable effects such as impotence, impairment of muscle growth etc. On the other hand, fewer naturally occurring non-steroidal 5 α -R inhibitors have also been reported, e.g., unsaturated fatty acids, etc.

Synthetic Drugs as 5 α -Reductase Inhibitors

Mellin, et al. (1993) [5] found that 4-azasteroids are efficient inhibitors of human skin 5 α -R and offer a good treatment for acne, hirsutism and AGA [5]. Giudici, et al. (1996) [6] reported FCE 28260 as a highly potent inhibitor of human recombinant 5 α R type 2 and 1 isoforms; it was more potent than finasteride on both isoforms [6]. Igarashi, et al. (1999) [7] found a new series of phenoxybenzoic acid derivatives as potent human prostatic 5 α -R inhibitors [7]. Igarashi, et al. (2000) [8] presented a series of indole derivatives that showed potent inhibitory activities for human prostatic 5 α -R [8]. Cabeza, et al. (2001a) [9] synthesized two new steroidal compounds from 16-dehydropregnenolone acetate, and reported their 5 α -R inhibitory activity [9]. Cabeza, et al. (2001b) [10] reported 5 α -R inhibitory activities of 4 new progesterone derivatives. P-substituted benzyloxy compounds were found highly potent [10]. Ramirez et al. (2002) [11] determined the 5 α -R inhibitory activity of several new 16- methyl pregnane derivatives *in vitro* [11]. Cabeza, et al. (2002) [12] reported that 16-bromosubstituted trienediones, 16-methyl substituted dienediones, and 16-methyl substituted trienediones inhibit the activity of 5 α -R and exhibit a very high affinity for the androgen receptor [12]. Pérez-Ornelas, et al. (2005) [13] reported the *in vitro* and *in vivo* 5 α -R inhibitory activity of several new 3-substituted pregn-4, 16-dehydro-pregnenolone acetate [13]. Festuccia, et al. (2005) [14] reported the inhibition of 5 α -R type 1 and 5 α -R type 2 by MK386 and MK906 respectively. They suggested that these might have therapeutic potential to reduce the growth of prostate through the inhibition of autocrine or paracrine mechanism involving stromal cell compartment [14].

Marketed 5 α -Reductase Inhibitors

There are two 5 α -reductase inhibitors approved by the FDA-Dutasteride and Finasteride. Dutasteride inhibits both type 1 and type 2 isoenzymes whereas finasteride inhibits only the type 2 isoenzyme. Clinical effects of 5 α -reductase inhibitors include decrease in serum DHT, decrease in serum PSA, decreased risk of symptomatic progression of BPH, reduction in risk of acute urinary retention, reduction in need for surgery for BPH, decreased risk of prostate cancer, and prevention of gross hematuria secondary to BPH [15]. Although various approaches involving attenuation of androgenic stimulation of prostatic growth and the use of 5 α -reductase inhibitors such as finasteride, dutasteride and epristeride have been employed, but their use is limited by multiple side effects. Finasteride can cause adverse effects such as gynecomastia, impairment of muscle growth and severe myopathy due to the structural similarity to steroid hormones. However, the magnitude of therapeutic effect produced by finasteride is relatively small, and a clinically significant benefit is observed in less than half of the treated patients [16]. Sexual adverse effects, such as decreased libido, erectile dysfunction, and decreased ejaculate, have been reported [17]. Thus, it may be rewarding to look into traditional herbal medicines for the management of BPH.

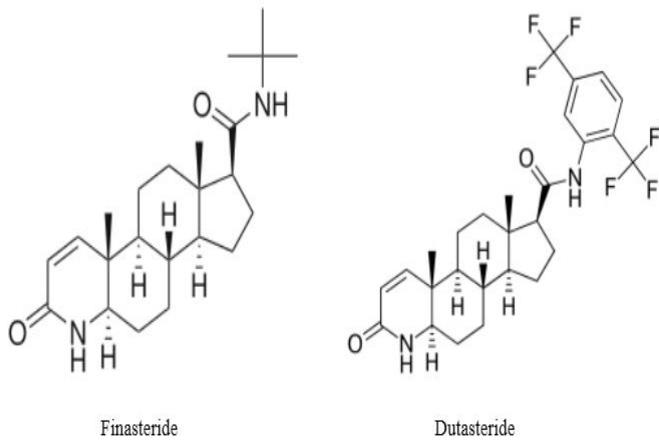


Figure 1: Chemical Structures of Finasteride and Dutasteride.

Herbal Drugs as 5 α -Reductase Inhibitors

Komoda (1989) [18] isolated the inhibitors of 5 α -R from 50% ethanolic extract of *Populus nigra*. The compounds were identified as pinobanksin, 8, 7-dimethyl quercetin and pinocembrine. Pinocembrine showed most potent activity among them [18]. Liao and Hiipakka (1995) [19] reported that green tea catechins, (-) epigallocatechin-3-gallate and (-) epicatechin-3-gallate are potent inhibitors of 5 α -type 1 but not 5 α -R type 2 [19]. Lesuisse, et al. (1996) [20] evaluated the inhibition of 5 α -R by the aqueous extract of *Epilobium parviflorum*. The active compound was identified as macrocyclic tannin, oenothein B [20]. Liang and Liao (1997) [21] reported that γ -linolenic acid inhibits 5 α -R activity *in vitro* and *in vivo*. The effect of γ -linolenic acid was

localized and did not affect the androgen dependent growth of testis and prostate, thus can only be useful for androgen dependent skin disorders [21]. Palin et al. (1998) [22] showed the inhibitory action of *Sereona repens* on prostate porcine microsomal 5 α -R activities [22]. *Sereona repens* (Permixon[®]) at a concentration of 10 μ g/ml was shown to be an effective inhibitor of both 5 α -R type 1 and 2 isozymes without influencing the secretion of PSA by the epithelial cells [23]. Sundaram, et al. (1999) [24] evaluated the 5 α -R inhibitory potential of Prostane, a polyherbal formulation consisting of *Tribulus terrestris*, *Areca catechu*, *Pedalium murex*, *Caesalpinia bonduc* and *Asparagus racemosus* using rat prostate homogenate as an enzyme source [24]. Ishiguro et al. (2000) [25] investigated that the 35% ethanolic extract of aerial parts of *Impatiens balsamina* has inhibitory activity for testosterone 5 α -R [25]. Shimizu et al. (2000) [26] reported the potent inhibitory activity of the methanolic extract of heartwood of *Artocarpus incisus* against 5 α -R [26]. Chlorophorin and artocarpin showed more potent inhibitory activity than α -linolenic acid. A geranylated chalcone was isolated from leaves of the plant which showed potent 5 α -R inhibitory activity [27].

Shimizu, et al. (2000) [28] reported potent 5 α -R inhibitory activity of the acetone extract of *Boehmeria napononivea*. The active components were α -linolenic, linolenic, palmitic, elaidic, oleic and stearic acid [28]. Matsuda, et al. (2001) [29] showed *in vitro* testosterone 5 α -R inhibitory activity of myricanone, myricanol and myricetin isolated from the aqueous ethanolic extract of *Myrica cortex* (bark of *Myrica rubra*) [29]. Matsuda, et al. (2001) [30] reported the testosterone 5 α -R inhibitory activity of the diethyl ether extract of rhizomes of *Amenorrhena asphodeloides* [30]. Liao, et al. (2001) [31] reported that certain unsaturated aliphatic fatty acids such as myristoleic acid and other natural compounds alizarin and curcumin are effective 5 α -R inhibitors [31]. Seo et al. (2002) [32] isolated a prenylated coumarin, osthenoil and a sesquiterpene bisabolangelone from the root of *Angelica koreana* and reported their 5 α -R type 1 inhibitory effect in LNCaP cells [32]. Hiipakka et al. (2002) [33] reported that several polyphenolic compounds are potent inhibitors of type 1 and 2 5 α -R. Myricetin, querectin, baicalein and fisetin were potent inhibitors type 1 5 α -R. Biochanin A, diadzein, genistein and kaempferol were much better inhibitors of type 2 than the type 1 isozyme [33]. Matsuda et al. (2002) [34] reported that the aqueous ethanolic extract of spores of *Lygodium japonicum* showed *in vitro* testosterone 5 α -R inhibiting activity [34]. Kim, et al. (2003) [35] evaluated the activity against 5 α -R, of four diarylheptanoids from the acetone extract of the rhizomes of *Alpinia officinarum* [35]. Park, et al. (2003) [36] reported that torilin isolated from the methanolic extract of the fruits of *Torilis japonica*, showed potent inhibition against 5 α -reductase activity *in vitro* along with demonstrated the inhibitory activity of *Thujae occidentalis* semen extract for 5 α -R type 2 isozymes [36].

Liu, et al. (2006) [37] reported that triterpenoids isolated from ethanolic extract of *Ganoderma lucidum* inhibited 5 α -R

activity. The presence of the C-3 carbonyl group and of the C-26 α , β -unsaturated carbonyl group was characteristic of almost all inhibitors isolated from *G. lucidum* [37]. *Ganoderma lucidum* has been reported to inhibit testosterone induced prostatic hyperplasia in rats and mechanism of action has been attributed to its activity to inhibit 5 α -reductase enzyme [38-40]. Liu, et al. (2007) [41] identified the active principles *in vivo* as triterpenoids and hence suggested that the triterpenoid fraction of *Ganoderma lucidum* can be effective in the treatment of BPH [41]. Further varieties of herbs with proven antiandrogenic activity have been evaluated for their 5 α -reductase inhibitory potential and *Ganoderma lucidum* was found to be the most potent among the eleven herbs included in the study [42]. Previously studies have been done on *Benincasa hispida* [43], *Echinops echinatus* [44], *Urtica dioica* [45] and *Sphaeranthus indicus* [46] wherein all the tested herbs have been found to be potent inhibitors of 5 α -reductase and had shown their effectiveness in the treatment and management of BPH in rat models. Furthermore, these herbs have shown their effectiveness on human prostate cancer cell lines (PC3 and DU145) proving their potential to be future candidates for cancer research, especially for prostate cancer [47, 48].

Conclusion

The main aim of this review was to shortlist all the drugs useful in the treatment of Benign Prostatic hyperplasia which have 5 α -reductase inhibitory activity. Targeting this enzyme for the treatment of BPH is a very important strategy which has proved successful in the research cited in this review and further research in this area may lead to the discovery of some very potent combinations for the treatment of BPH. Molecular level mechanistic studies are a need of the hour for finding a sure remedy of this disease. It can be said that the findings in this area should have a positive impact on the ongoing research on Prostate Cancer too.

References

- Anderson S, Bishop RW, Russell DW (1989) Expression Cloning and Regulation of Steroid 5 α -Reductase, an Enzyme Essential for Male Sexual Differentiation. *J Biol Chem* 264: 16249-16255.
- Occhiali EG, Guarna A, Danza G, Serio M (2004) Selective Non-steroidal Inhibitors of 5 α -reductase Type 1. *J Steroid Biochem Mol Biol* 88: 1-16.
- Katz MD, Cai LQ, Zhu YS, Herrera C, Defillo-Ricart M, et al. (1995) The biochemical and phenotypic characterization of females homozygous for 5 α - Reductase-2 deficiency. *J Clin Endocrinol Metab* 80: 3160-3167.
- Campbell SC (2017) Benign Prostatic Hyperplasia Pathology.
- Mellin TN, Busch RD, Rasmussen GH (1993) Azasteroids as inhibitors of testosterone 5 α -reductase in mammalian skin. *J Steroid Biochem Mol Biol* 44:121-131.
- Guicidi D, Briatico G, Cominato C, Zaccheo T, Iehle C, et al. (1996) FCE 28260, a New 5 α Reductase Inhibitor: *In vitro* and *in vivo* effects. *J Steroid Biochem Mol Biol* 58: 299-305.
- Igarashi S, Kimura T, Naito R, Hara H, Fujii M, et al. (1999) A novel class of inhibitors for human steroid 5 alpha-reductase: phenoxybenzoic acid derivatives. I. *Chem Pharm Bull* 47: 1073-1080.
- Igarashi S, Inami H, Hara H, Fujii M, Koutoku H, et al. (2000) A novel class of inhibitors for human steroid 5 α -reductase: synthesis and biological evaluation of indole derivatives. II. *Chem Pharm Bull* 48: 382-388.
- Cabeza M, Heuze I, Bratoeff E, Ramírez E, Martínez R (2001a) Evaluation of new pregnane derivatives as 5 α -reductase inhibitor. *Chem Pharm Bull* 49: 525-530.
- Cabeza M, Heuze I, Bratoeff E, Murillo E, Ramirez E, et al. (2001b) New progesterone esters as 5 α -reductase inhibitors. *Chem Pharm Bull* 49: 1081-1084.
- Ramirez E, Cabeza M, Heuze I, Gutiérrez E, Bratoeff E, et al. (2002) Synthesis and pharmacological evaluation of new 16-methyl pregnane derivatives. *Chem Pharm Bull* 50: 15-20.
- Cabeza M, Bratoeff E, Flores E, Ramírez E, Calleros J, et al. (2002) 5 Alpha-reductase inhibitory and antiandrogenic activities of novel steroids in hamster seminal vesicles. *Chem Pharm Bull (Tokyo)* 50: 1447-1452.
- Pérez-Ornelas V, Cabeza M, Bratoeff E, Heuze I, Sánchez M, et al. (2005) New 5 α -reductase inhibitors: *in vitro* and *in vivo* effects. *Steroids* 70: 217-224.
- Festuccia C, Angelucci A, Gravina GL, Muzi P, Vicentini C, et al. (2005) Effects of 5 α - reductase inhibitors on androgen-dependent human prostatic carcinoma cells. *J Cancer Res Clin Oncol* 131: 243-254.
- Chung DE, Te AE, Tyagi R (2010) Lower Urogenital Tract Dysfunction in Men and Women. *Principles of Gender Specific Medicine*. Academic Press. 2nd Edition 2010: p421-431.
- Uygun MC, Gur E, Arik AI, Altug U, Erol D (1998) Erectile dysfunction following treatments of benign prostatic hyperplasia: a prospective study. *Andrologia* 30: 5-10.
- Hirshburg JM, Kelsey PA, Therrian CA, Gavino AC, Reichenberg JS (2016) Adverse Effects and Safety of 5-alpha Reductase Inhibitors (Finasteride, Dutasteride): A Systematic Review. *J Clin Aesthet Dermatol* 9:56-62.
- Komoda Y (1989) Isolation of flavonoids from *Populus nigra* as delta 4-3-ketosteroid (5 alpha) reductase inhibitors. *Chem Pharm Bull* 37: 3128-3130.
- Liao SS and Hiipakka RA (1995) Selective inhibition of Steroid 5 α -reductase isozymes by Tea Epicatechin-3-gallate and Epigallocatechin-3-gallate. *Biochem Biophys Res Commun* 214: 833-888.
- Lesuisse D, Berjonneau J, Ciot C, Devaux P, Doucet B, et al. (1996) Determination of oenothein B as the active 5-alpha-reductase-inhibiting principle of the folk medicine *Epilobium parviflorum*. *J Nat Prod* 59: 490-492.
- Liang T and Liao S (1997) Growth suppression of hamster flank organs by topical application of gamma-linolenic and other fatty acid inhibitors of 5 α reductase. *J Invest Dermatol* 109: 152-157.
- Palin MF, Faguy M, LeHoux JG, Pelletier G (1998) Inhibitory effects of *Serenoa repens* on the kinetic of pig prostatic microsomal 5 α -reductase activity. *Endocrine* 9: 65-69.
- Bayne CW, Donnelly F, Ross M, Habib FK (1999) *Serenoa repens* (Permixon[®]): A 5 α -reductase types I and II inhibitor-new evidence in a coculture model of BPH. *The Prostate* 40: 232-241.

24. Sundaram R, Mohan AR, Gopumadhavan S, Venkataranganna MV, Venkatesha U, et al. (1999) Protective Effect of Prostane in Experimental Prostatic Hyperplasia in Rats. *Asian J Androl* 4: 175-181.

25. Ishiguro K, Oku H, Kato T (2000) Testosterone 5 α -reductase inhibitor bisnaphthoquinone derivative from *Impatiens* <?tcaps=0>balsamina. *Phytother Res* 14: 54-56.

26. Shimizu K, Fukuda M, Kondo R, Sakai K (2000) The 5 alpha-reductase inhibitory components from heartwood of *Artocarpus incisus*: structure-activity investigations. *Planta Med* 66: 16-19.

27. Shimizu K, Kondo R, Sakai K, Buabarn S, Dilokkunanan U (2000) A geranylated chalcone with 5 alpha-reductase inhibitory properties from *Artocarpus incisus*. *Phytochem* 54: 737-739.

28. Shimizu K, Kondo R, Sakai K, Shoyama Y, Sato H, et al. (2000) Steroid 5alpha-reductase inhibitory activity and hair regrowth effects of an extract from *Boehmeria nipponica*. *Biosci Biotechnol Biochem* 64: 875-877.

29. Matsuda H, Yamazaki M, Matsuo K, Asanuma Y, Kubo M (2001) Anti-androgenic activity of *Myrica* Cortex-isolation of active constituents from bark of *Myrica rubra*. *Biol Pharm Bull* 24: 259-263.

30. Matsuda H, Sato N, Yamazaki M, Naruto S, Kubo M (2001) Testosterone 5 α -reductase inhibitory active constituents from *Anemarrhenae Rhizoma*. *Biol Pharm Bull* 24: 586-587.

31. Liao S, Lin J, Dang MT, Zhang H, Kao YH, et al. (2001) Growth suppression of hamster flank organs by topical application of catechins, alizarin, curcumin, and myristoleic acid. *Arch Dermatol Res* 293: 200-205.

32. Seo EK, Kim KH, Kim MK, Cho MH, Choi E, et al. (2002) Inhibitors of 5alpha-reductase type I in LNCaP cells from the roots of *Angelica koreana*. *Planta Med* 68:162-163.

33. Hiipakka RA, Zhang HZ, Dai W, Dai Q, Liao S (2002) Structure-activity relationships for inhibition of human 5 α -reductases by polyphenols. *Biochem Pharmacol* 63: 1165-1176.

34. Matsuda H, Yamazaki M, Naruo S, Asanuma Y, Kubo M (2002) Anti-androgenic and hair growth promoting activities of *Lygodii spora* (spore of *Lygodium japonicum*) I. Active constituents inhibiting testosterone 5 α -reductase. *Biol Pharm Bull* 25: 622-626.

35. Kim YU, Son HK, Song HK, Ahn MJ, Lee SS, Lee SK (2003) Inhibition of 5 α -reductase activity by diarylheptanoids from *Alpinia officinarum*. *Planta Med* 69: 72-74.

36. Park WS, Son ED, Nam GW, Kim SH, Noh MS, et al, (2003) Torilin from *Torilis japonica*, as a new inhibitor of testosterone 5 α -reductase. *Planta Med* 69: 459-461.

37. Liu J, Kurashiki K, Shimizu K, Kondo R (2006) Structure-activity relationship for inhibition of 5 α -reductase by triterpenoids isolated from *Ganoderma lucidum*. *Bioorg Med Chem* 14: 8654-8660.

38. Nahata A and Dixit VK (2012) *Ganoderma lucidum* is an inhibitor of testosterone induced prostatic hyperplasia in rats. *Andrologia*, 44 Suppl 1: 160-174.

39. Nahata A (2013) *Ganoderma lucidum*: A Potent Medicinal Mushroom with Numerous Health Benefits. *Pharmaceut Anal Acta* 4:e159.

40. Fujita R, Liu J, Shimizu K, Konishi F, Noda K, et al. (2005) Anti-androgenic activities of *Ganoderma lucidum*. *J Ethnopharmacol* 102:107-112.

41. Liu J, Shimizu K, Konishi F, Noda K, Kumamoto S, et al. (2007) Anti-androgenic activities of the triterpenoids fraction of *Ganoderma lucidum*. *Food Chem* 100:1691-1696.

42. Nahata A and Dixit VK (2014) Evaluation of 5 α -reductase inhibitory activity of certain herbs useful as antiandrogens. *Andrologia* 46: 592-601.

43. Nandechia C, Nahata A, Dixit VK (2010) Effect of *Benincasa hispida* Fruits on Testosterone induced Prostatic Hypertrophy in Albino Rats. *Curr Ther Res Clin Exp* 71: 331-343.

44. Agrawal M, Nahata A, Dixit VK (2012). Protective effects of *Echinops echinatus* on testosterone-induced prostatic hyperplasia in rats. *Eur J Integr Med* 4: e177-e185.

45. Nahata A and Dixit VK (2012) Ameliorative effects of Stinging Nettle (*Urtica dioica*) on testosterone induced prostatic hyperplasia in rats. *Andrologia* 44 Suppl 1: 396-409.

46. Nahata A and Dixit VK (2011) *Sphaeranthus indicus* attenuates testosterone induced prostatic hyperplasia in albino rats. *Phytother Res* 25: 1839-1848.

47. Nahata A, Saxena A, Suri N, Saxena AK, Dixit VK (2013) *Sphaeranthus indicus* induce apoptosis through mitochondrial-dependent pathway in HL-60 cells and exerts cytotoxic potential on several human cancer cell lines. *Integr Cancer Ther* 12: 236-247.

48. Nahata A (2017) Anticancer Agents: A Review of Relevant Information on Important Herbal Drugs. *Int J Clin Pharmacol Toxicol* 6: 250-255.