

1, 3, 4-Thiadiazoles: An Overview

Dhanapal Visagaperumal*, Jayakumar Ramalingam, Vineeth Chandy

Department of Pharmaceutical Chemistry, T John College of Pharmacy, India

***Corresponding author:** Dhanapal Visagaperumal, Department of Pharmaceutical Chemistry, T John College of Pharmacy, Bangalore, India. Tel: +91990896316; Email: chemistryvishak@gmail.com and vishak_dr@yahoo.co.in

Citation: Visagaperumal D, Ramalingam J, Chandy V (2018) 1, 3, 4-Thiadiazoles: An Overview. Curr Res Bioorg Org Chem: CRBOC-103. DOI: 10.29011/CRBOC -101. 100003

Received Date: 12 January, 2018; **Accepted Date:** 26 January, 2018; **Published Date:** 01 February, 2018

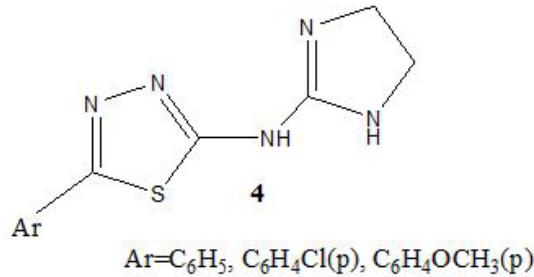
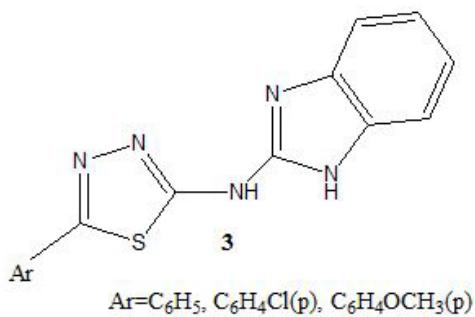
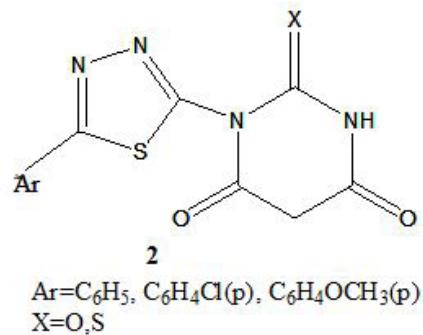
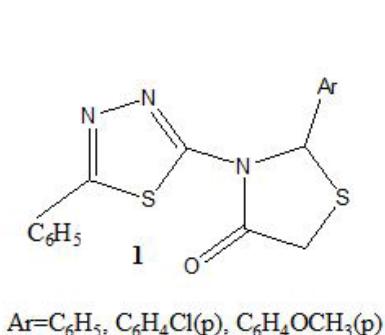
Abstract

Many of the pharmaceutically important compounds possessed 1,3,4-thiadiazoles as its heterocyclic moiety. They have shown many of the activities like anti-inflammatory, anticonvulsant, antimicrobial, anticancer, antihypertensive. In this review some of the recent work done on the moiety with their activity was given.

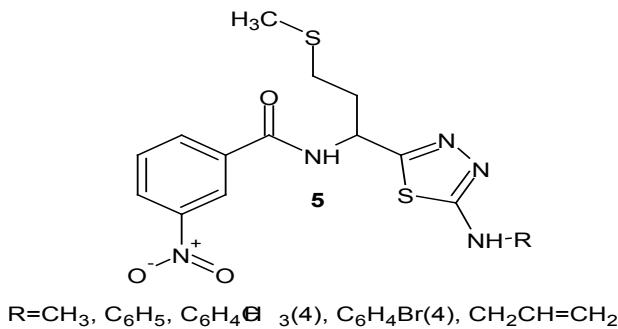
Keywords: Biological Activities; 1,3,4-Thiadiazoles

Introduction

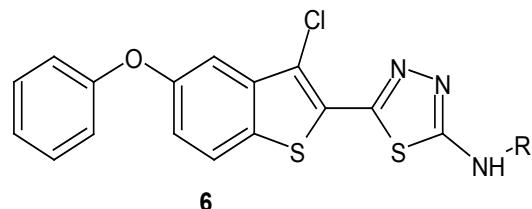
A large number of biologically active compounds were having heterocyclic moieties and the molecular framework of the compounds determines the biological activity. Heterocyclic nucleus containing nitrogen atoms were having a special interest because they are in an important class of natural and non-natural products, many of them exhibits usual biological synthesis. Thiadiazoles had an important place in the drug industries. Among that, 1,3,4-thiadiazoles have wide uses in many fields. In the earlier days, they were used in the pharmaceutical area as an antibacterial with known sulphonamides. Then, in later days some of them were used as antitumour, anti-inflammatory agents, pesticides, dyes, lubricants and analytical agents.

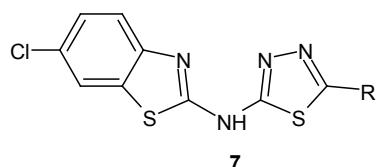




1, 3, 4-thiadiazole derivatives is possessing biological activities probably conferred because of strong aromaticity of the ring system, that leads to great *in vivo* stability and generally, a lack of toxicities for higher vertebrates, including humans. When different functional groups are attached to nucleus it may interact with biological receptors and produce an outstanding property. 1,3,4- Thiadiazoles exhibits various biological activities and find a great use in the fields of pharmaceuticals, acetazolamide, the first non-mercurial diuretic drug [1-4], antitumor agents [5], agrochemicals [6]. Some antibacterial sulphonamides which

are not used clinically but possessed historical [7] importance. However, this molecules Thiadiazoles (e.g. 1,3,4-thiadiazoles) exhibit a number of extremely interesting spectroscopic properties, which are also worth mentioning. One of the very interesting spectroscopic properties of Thiadiazoles is the dual fluorescence effect (which can hardly be associated with the ESIPT or TICT effects) [8-11]. Herewith a brief account of various alterations done on the Thiadiazoles nucleus and their biological activities was given.


Biological Activities

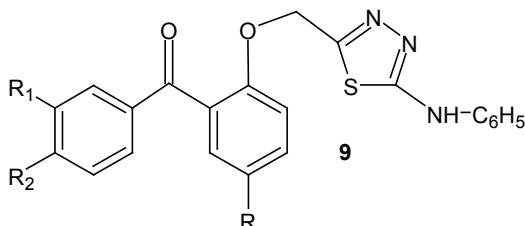
Antimicrobial activity


A.A. Aly, et al. [12] had synthesized a variety of heterocyclic compounds from 2-amino Thiadiazoles like 3-[5-(3-chlorobenzo[b]thiophen-2-yl)-1,3,4-thiadiazol-2-yl]-2-arylthiazolidin-4-ones **1**, 1-[5-(3-chlorobenzo[b]thiophen-2-yl)-1,3,4-thiadiazol-2-yl]-3-phenyldihydropyrimidine-2,4,6-trione **2**, N-(4,5-dihydro-1*H*-imidazol-2-yl)-5-(3-chlorobenzo[b]thiophen-2-yl)-1,3,4-thiadiazol-2-ylamine **3**, N-[5-(3-chlorobenzo[b]thiophen-2-yl)-1,3,4-thiadiazol-2-yl]-1*H* benzo[d]imidazol-2-ylamine **4**. The compounds were screened for antibacterial activity against *Bacillus cereus*, *Escherichia coli* and for antifungal activity against *Aspergillus niger* and *Penicillium notatum*. All the compounds have shown a remarkable activity towards the selected strains.


2-[1-(3-nitrobenzoylamino)-3-(methylthio)-5-(substituted amino)-1,3,4-thiadiazoles **5** were prepared by Lenuta profire, et al. [13]. All the compounds were tested for antimicrobial activities against *Staphylococcus aureus*, *Bacillus antracis*, *Bacillus cereus*, *Sarcina lutea*, *Escherichia coli*. On MIC determination, only the compound containing R=4-CH₃ C₆H₄ had showed good activity at low concentration upon *Bacillus aureus* and *Bacillus cereus*. They were also investigated for toxicities and were found to have less toxicity.

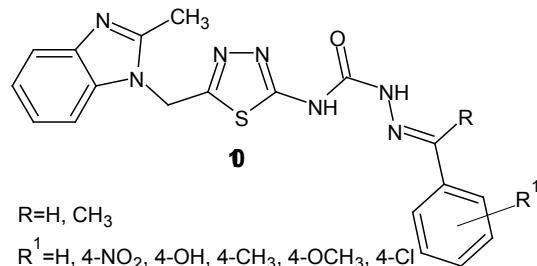
H. S. Joshi, et al. [14] had synthesized a series of 2-(3'-chloro-5'-phenoxy-benzo[*b*]thiophen-2'-yl)-5-arylamino-1,3,4-thiadiazoles **6** and tested their antimicrobial activity. They found that when R=4-Cl C₆H₄ and R=4-CH₃ C₆H₄, the compound showed good activity against *Escherichia coli* and R=3-Cl C₆H₄, 4-Cl C₆H₄ they showed good activity against *Bacillus megaterium* and with R=C₆H₅ and R=2-NO₂ C₆H₄ it showed good activity against *Staphylococcus aureus*. When the compound possessed R=C₆H₅, 3-Cl C₆H₄, 4-Cl C₆H₄ a good activity against *Aspergillus niger* was found. All the other compounds have shown mild activity against other organisms.

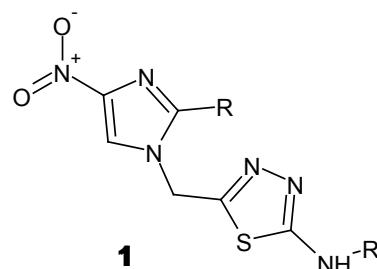
Some 2-aryl-5-(6'-chloro-1',3'-benzothiazol-2-yl-amino)-1,3,4-thiadiazoles **7** were screened for antibacterial activity against *E. coli*, *Staphylococcus aureus*, *Pseudomonas aeruginosa* and for antifungal activity against *Aspergillus niger*, *Candida albicans* by Mohd Amir, et al. [15]. Acetoxy phenyl derivative showed potent activity against *Staphylococcus aureus* and when R=2-naphthylmethyl, it showed good activity against *E. Coli* and with R=2,4-dichlorophenyl containing compound showed significant activity against bacterial strains. When R=2-aminophenyl and R=2, 4-dichloro phenoxy methyl gave good antifungal activity against *Aspergillus niger* and *Candida albicans* respectively.


R=C₆H₅, 4-ClC₆H₄, 2,4-(Cl)₂C₆H₃, 4-NO₂C₆H₄,
2-NH₂C₆H₄, 2,4-(Cl)₂C₆H₃OCH₂, 4-OCH₃C₆H₄,
2-Acetoxy phenyl, 3-pyridinyl, 2-naphthyl methyl

P. Mishra et al. [16] prepared some new 2-methyl-3-(1,3,4-thiadiazoyl)-4-(3H) quinazolinones **8** and screened them for them *in vitro* antibacterial activity against *Staphylococcus aureus*, *Bacillus subtilis*, *E Coli* and *Candida albicans*, *Aspergillus niger*, *Curvularia lunata* for antifungal activity. All the compounds have shown mild to moderate activity. They also determined MIC for the synthesized compounds and found that they had better fungi toxic than bacteriotoxic. Compound with 4-Cl C₆H₄ had a potent antibacterial and antifungal activity.

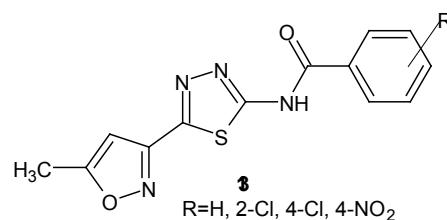
R=CH₃, C₃H₇, C₄H₉, C₆H₅, C₆H₄(p)CH₃, C₆H₄(p)Cl


Sheena Shashikanth, et al. [17] prepared few 2-(2-aryloylaryloxy) methyl-5-N-phenylamino-1,3,4-thiadiazoles **9** and found some active compounds when screened them against *Bacillus cereus*, *Staphylococcus aureus*, *E coli* for antibacterial and *Penicillium nigricans*, *Aspergillus fumigatus*, *Fusarium solani* for antifungal activity. The chloro substitution has shown good activity.


R=CH₃
R₁=Cl, H, CH₃
R₂=H, Cl, OCH₃

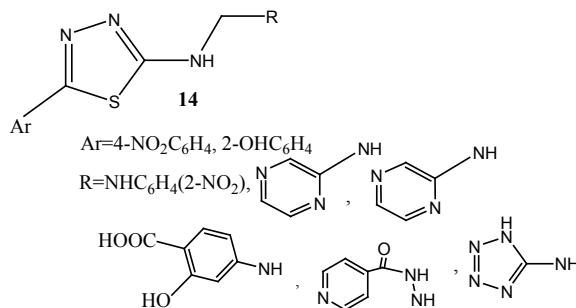
A series of 2,5-disubstituted 1,3,4-thiadiazoles **10** were synthesized by H. Rajak, et al. [18] and found a mild to moderate antimicrobial activity when screened against *Staphylococcus aureus*, *Bacillus aureus*, *Proteus mirabilis*, *Pseudomonas aeruginosa* and for antifungal activity against *Aspergillus niger*

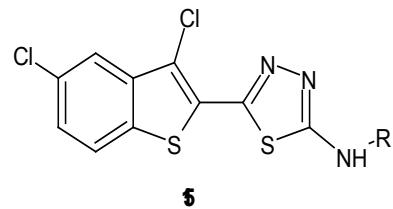
and *Candida albicans*. The compound with 4-NO₂C₆H₄ substituent found to be more active compound, showing a broad spectrum of activity.



Various 1,3,4-thiadiazole derivatives **11** were synthesized by A. Shafiee, et al. [19] and found to be active against *Staphylococcus aureus*, *Staphylococcus epidermidis*, *Escherichia coli*, *Bacillus subtilis*, *Clostridium difficile*, *Aspergillus niger* and *Cryptococcus neoformans*. They found that most of the compounds were active against *Bacillus subtilis* and *Clostridium difficile*. 2-butylamino-5-[(4-nitro-1H-imidazol-1-yl) methyl]-1,3,4-thiadiazole had shown good activity against most organisms.

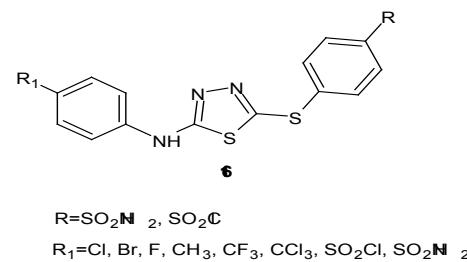
R=H, CH₃
R¹=CH₃(CH₂)₃, 4-CH₃O₆H₄, 4-NO₂C₆H₄

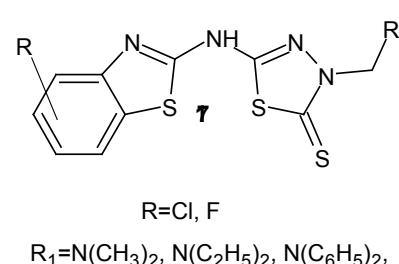

Zi yi Zhang, et al. [20] had synthesized some derivatives of 1,3,4-thiadiazole **13** and screened the compounds for *in vitro* antibacterial activity at 100 ppm concentration against *E coli*, *Staphylococcus aureus*, *Pseudomonas aeruginosa* and the unsubstituted and 4-Cl substituted compound were found to have moderate active compounds and others were inactive against *Staphylococcus aureus*.


Antitubercular activity

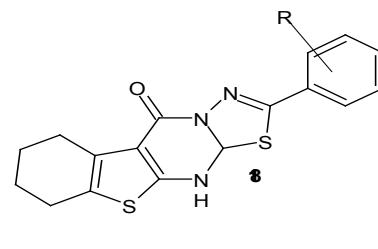
H.S. Joshi, et al. [14] had synthesized a series of 2-(3'-chloro-5'-phenoxy-benzo[b]thiophen-2'-yl)-5-arylamino-1,3,4-

thiadiazoles **6** and tested for antitubercular activity and found that p-methoxy derivative showed good inhibition at 0.25 μ g/ml than other compounds. Shashikant R Pattan et al [21] prepared some of N'-substituted-N-[5-(4-nitrophenyl)-[1,3,4] thiadiazol-2-yl]-methanediamines **14** and screened for antitubercular activity. Most of the compounds have shown significant activity.

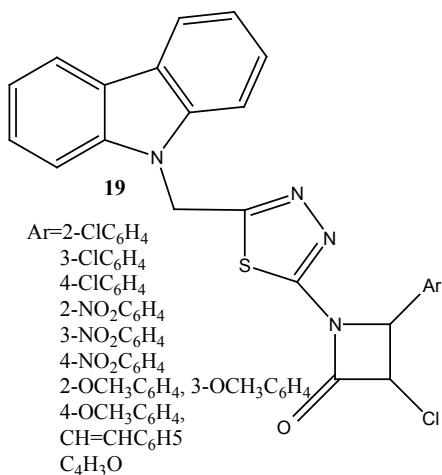

2 - (3', 5' - dichlorobenzo[b]thiophen - 2' - yl) - 5 - arylamino - 1,3,4 - Thiadiazoles **15** were synthesized by H.S. Joshi and K.M. Thaker [22]. They had evaluated all the synthesized compounds and found that the compound with nitro phenyl shown good inhibition against *Mycobacterium tuberculosis* H₃₇Rv with 98% inhibition among all compounds. The compounds for antitubercular activity were conducted on organism at 6.25 μ g/ml in primary screening and those that have shown >90% inhibitions were compared with standard at 0.25 μ g/ml.


R=C₆H₅, 2-Cl C₆H₄, 3-Cl C₆H₄, 2-Cl-5-CH₃C₆H₃, 2,3-(CH₃)₂C₆H₃, 4-OCH₃C₆H₄, 2-CH₃C₆H₄, 4-CH₃C₆H₄, 2-NO₂C₆H₄, 4-NO₂C₆H₄

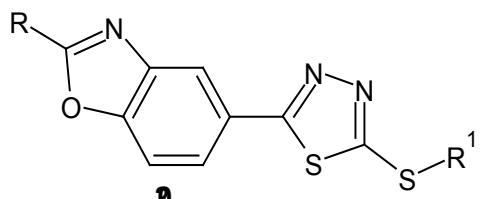
Anti-inflammatory activity


Rajesh Sharma, et al. [23] synthesized a series of diaryl substituted 2-amino-5-sulfanyl-1,3,4-thiadiazole derivatives **16** and evaluated for anti-inflammatory activity using Carrageeenan induced rat paw oedema method. The compound with R=SO₂NH₂, R₁=SO₂Cl showed highest selective COX-2 inhibitory activity. Some of the compounds have shown both COX-1 and COX-2 inhibition and some with only on COX-1. They found that some compounds have shown non selective COX inhibitors.

K.M. Basavaraja, et al. [24] prepared few 2-[3-substituted-2-thione-1,3,4-thiadiazole-5-yl] amino bezothiazoles **17** and found a high significant anti-inflammatory activity when R'=diphenylamino, R'=morpholino, R'=diethylamino group.

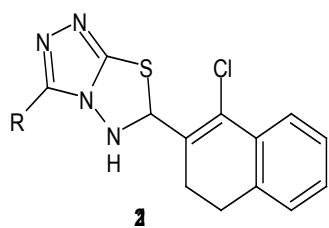


Some new substituted thiadiazolothieno-pyrimidinones **18** were prepared by Amit Kumar Das et al. [25] and found to have some active compounds when evaluated for anti-inflammatory activity. Some thiadiazolopyrimidinones (R= o-methoxy, m-methoxy, p-methoxy, o-methyl, m-methyl, p-methyl, p-amino, p-chloro) were synthesized. Among these, p-methoxy, o-methyl, m-methyl, p-chloro showed activity after 3 h and o-methoxy, m-methoxy had shown after 2 h from time of administration. p-Amino has shown least activity.



R=o-OCH₃, m-OCH₃, p-OCH₃, o-CH₃
m-CH₃, p-CH₃, p-NH₂, p-Cl

S.K. Srivastava, et al. [26] synthesized new carbazolyl-thiadiazol-2-oxo-azetidines **19** and evaluated their anti-inflammatory activity. Only the compound with Ar=2-Cl C₆H₄ had shown good activity when compared to other derivatives and all the other compounds have given mild to moderate activity.

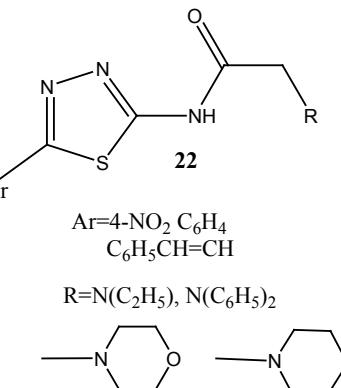


B. Gopal Krishna, et al. [27] worked on the synthesis of 5-(2-substituted benzoxazol-5-yl)-2-methyl thio/ benzylthio/ arylamino carbonyl methylthio-1,3,4-thiadiazoles **20** and studied their anti-inflammatory activity. They found that only compound with R=CH₂ C₆H₅ has shown 65.39% inhibition of edema.

R=H, CH₃

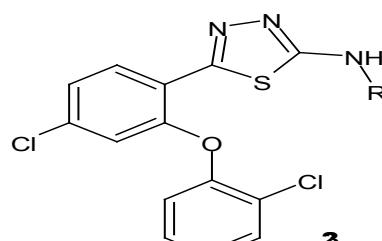
A new series of compounds containing 3-alkyl/aryl-6-(1-chloro-3,4-dihydronaphth-2-yl)-5,6-dihydro-s-triazolo[3,4-b] [1,3,4] thiadiazoles **21** were synthesized by Rajive gupta, et al. [28]. They had evaluated their compounds for anti-inflammatory activity and found that all compounds showed mild anti-inflammatory activity of about 3- 12% against acute Carrageenan-induced oedema in rat paw method.

R=CH₃, C₂H₅, C₃H₇, C₆H₅, CH₂C₆H₅


4-OCH₃C₆H₄, 2-CH₃C₆H₄, 4-CH₃C₆H₄, 2-Cl C₆H₄

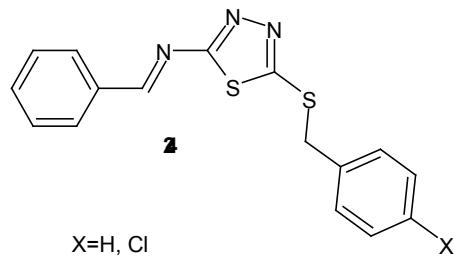
E. Palaska, et al. [29] prepared few derivatives of 2-(2-naphthylloxymethyl)-5-substitutedamino-1,3,4-thiadiazoles. They

had evaluated the compounds for anti-inflammatory activity and ulcerogenic activities. None of the compounds showed significant side effects.


Antidiabetic activity

Shashikant R Pattan, et al. [30] worked on a few Thiadiazoles derivatives **14** and found some moderate to good active compounds when evaluated for antidiabetic activity. The compound with 4-carboxy-3-hydroxy phenyl amino has shown maximum antidiabetic activity than other derivatives. Some new series of 1,3,4-thiadiazoles **22** were synthesized and they were screened for antidiabetic activity by Shashikant R Pattan, et al. [31]. They had synthesized of about eight compounds of which the compound with R=piperidinyl had shown maximum antidiabetic activity and R=diphenylamino derivative showed moderate activity.

Anticonvulsant activity

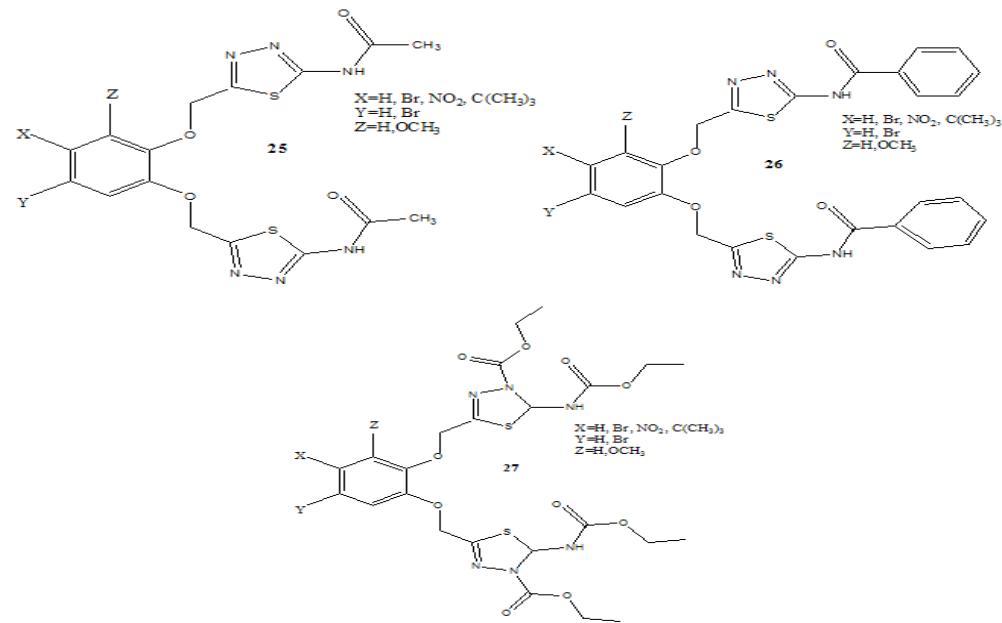

A. Foroumadi, et al. [32] reported some novel 2-amino-5-[4-chloro-2-(2-chlorophenoxy) phenyl]-1,3,4-thiadiazole derivatives **23** and studied their anticonvulsant activity using MES and PTZ method. They had synthesized four compounds of which the compound with R=C₂H₅ had shown good anticonvulsant activity by both methods. While R=CH₃ has given the activity only with MES method.

R=H, CH₃, C₂H₅, C₆H₅

Bahar Ahmed, et al. [33] synthesized various compounds of 2-thiobenzyl-1,3,4-thiadiazoles **24** and studied their anticonvulsant activity and neurotoxicity test. They synthesized chlorobenzylated

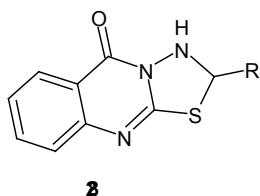
imines and benzylated imines. Among these, chlorobenzylated imines have shown 100% protection towards MES induced hind limb extension method with fast recovery and without neurotoxicity whereas benzylated imines showed less protection than chlorobenzylated imines towards MES induced hind limb extension with slow recovery and without neurotoxicity.

Some of the new carbazolyl thiadiazol-2-oxo azetidines **19** had been synthesized by S.K.Srivastava, et al. [34]. They also studied for their anticonvulsant activity and found only the chloro derivatives had given good active compounds than other derivatives.


Analgesic activity

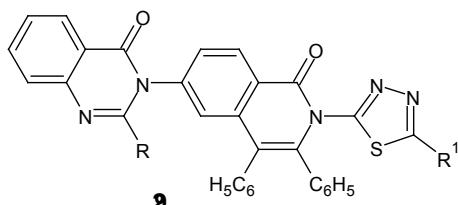
A new series of 4-[5-chlorophenylamino)-1,3,4-thiadiazole-2-yl-sulphonyl]-benzene sulphonamide **16** were synthesized

by Rajesh Sharma, et al. [35]. They had synthesized about 15 compounds and evaluated for analgesic activity using tail flick method. They found that compound with $R=SO_2NH_2$ and SO_2Cl has shown a significant analgesic activity compared to Tramadol HCl. K.M. Basavaraja, et al. [24] prepared a series of 2-[3-substituted-2-thione-1,3,4-thiadiazole-5-yl] aminobenzothiazoles **17** and tested for analgesic activity by using Eddys hot plate method. They had synthesized eight compounds, among which the compound with chloro and morpholino substitution showed higher potency with faster onset of action.

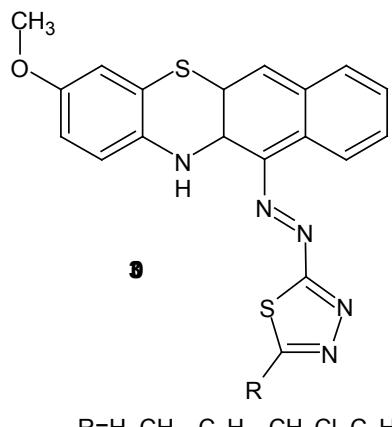

Anticancer activity

Kemal Sancak, et al. [34] prepared a series of *N*-[5-(2-(5-acetylamino-1,3,4-thiadiazole-2-yl) methoxy] substituted phenoxy} methyl)-1,3,4-thiadiazole-2-yl] acetamides **25**, *N*-[5-(2-[5-acetylamino-1,3,4-thiadiazole-2-yl)methoxy]substituted phenoxy} methyl)-1,3,4-thiadiazole-2-yl]benzamine **26**, Ethyl-5-(2-[4-{ethoxy carbonyl-5-(ethoxy carbonyl)imino}-4,5-dihydro-1,3,4-thiadiazole-2-yl] methoxy] substitutedphenoxy} methyl)-2-[ethoxycarbonyl]imino]-2,3-dihydro-1,3,4-thiaiazole-3-carboxylate **27**. All the new compounds were tested for cytostatic activity on tumor cell lines like breast cancer, on small cell lung cancer and CNS. The best activity was found with compounds containing acetyl and ethoxy carbonyl groups.

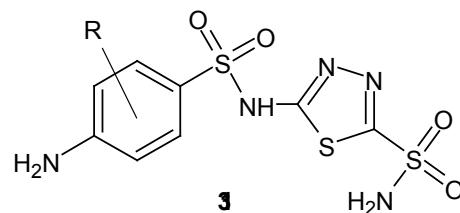
Antihypertensive activity


V. Alagarsamy, et al. [35] had synthesized few 2-substituted [1,3,4] Thiadiazoles [2,3-b] quinazolin-5(4H)-ones **28**. The compounds were tested for *in vivo* antihypertensive activity. They found that compound containing $R=NHCH_2CH=CH_2$ has reduced BP significantly when compared to prazocin, the standard.

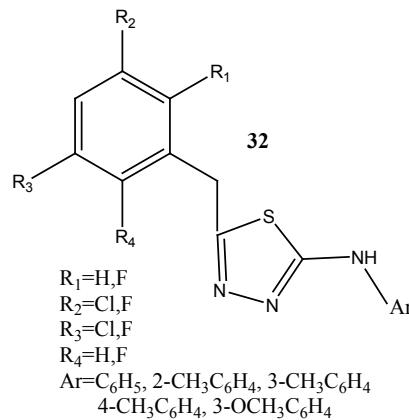
R=H, NHCH₃, NHCH₂CH=CH₂, NHC₆H₅, NH(3-Cl C₆H₄), NH(3-CH₃C₆H₄)


Antiviral activity

V.K. Pandey, et al. [36] had synthesized few derivatives of 2-aryl-3-[5'-aralkyl-1',3',4'-thiadiazolyl-{2'(2'',4''-diphenyl-1''-oxo isoquinolinyl}]-4-oxo-3H-quinazolinones **29** and screened for antiviral activity against influenza virus. The compound with p-chlorophenyl group at 2nd position of quinazolone and methyl group at 5th position of thiadiazole ring showed maximum activity.


R=C₂H₅, C₆H₅CH=CH, p-Cl C₆H₄, p-NO₂C₆H₄, m-C₆H₃(NO₂)₂
R¹=CH₃, C₂H₅

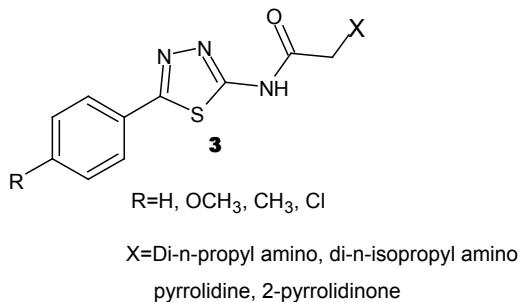
V.K. Pandey, et al. [37] prepared few derivatives of 1-(2'-diao-5'-aralkyl-1',3',4'-thiadiazolyl)-6-methoxy[2,3-*b*]benzophenothiazines **30**. They screened the compounds for antiviral activity against Japanese encephalitis (JEV) and Herpes Simplex Virus Type-I (HSV-I). They found that only one compound has shown activity against JEV upto 50% *in vitro* and also against HSV-I upto 8% *in vitro*. The compounds that had shown activity had phenyl group as its substitution.


Antioxidant activity

A.S. Mundey, et al. [38] synthesized 5-(4-amino) substituted benzene sulphonamido-1,3,4-thiadiazol-2-sulphonamides **31** and screened their free radical scavenging activity by using 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) method. They found that the unsubstituted derivative has shown moderate activity.

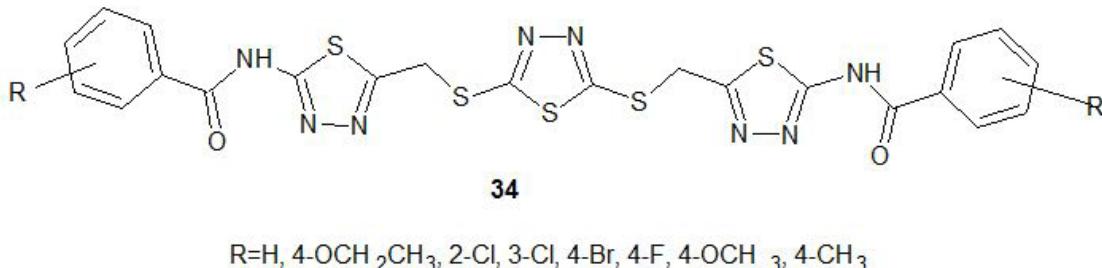
R=H, 5-OCH₃, 2-NO₂

B.K. Karale, et al. [39] had screened the antioxidant activity of some of the synthesized Thiadiazoles derivatives **32**. They had evaluated using DPPH method and found only some active compounds among the synthesized derivatives.



Rajive gupta [28] synthesized a series of 3-alkyl/aryl-6-(1-chloro-3,4-dihydronaphth-2-yl)-5,6-dihydro-s-triazolo[3,4-*b*][1,3,4]Thiadiazoles **21** and evaluated their antioxidant activity. They had evaluated against sodium nitroprusside induced nitric oxide production, measured by Griess reaction. Among all the synthesized compounds, only the compound containing the substituent like propyl, phenyl, 4-methylphenyl showed significant effect.

Diuretic activity


Few derivatives of some 1,3,4-thiadiazoles **33** were synthesized by Sanmati K Jaim [40] and also studied their diuretic action. They found that the compound having R=H with X=di-n-propyl/di-isopropyl amino substituent and compound with R=CH₃ with X=pyrrolidino substituent showed good activity. The compound having R=CH₃O, CH₃ and X=2-pyrrolidino substituent showed moderate activity. From the results of compounds on

diuretic activity it was found that di-iso propyl amino derivatives are more active than di-n-propyl amino derivatives.

Plant growth regulators

Some of the 2,5-bismercapto-1,3,4-thiadiazole heterocyclic derivatives **34** were synthesized by Tai Bao Wei, et al. [41]. They evaluated the compounds for the plant growth promoters and found some active compounds. They evaluated on the wheat seeds and recorded the length of seedlings and roots by taking the concentration of compounds from 0.001 to 100 ppm. The compounds having the substituent like 2-chloro, 3-chloro and 4-methyl groups had good promoting effects.

Conclusion

The literature reveals that 1,3,4-thiadiazoles has diverse biological potential, and the easy synthetic routes for synthesis have been attention of the chemists, pharmacologists and researchers. The anticancer and antiviral activities were the most encouraging activities for the pharmacists. Also the research on antitubercular activity has given positive results. In conclusion, a wide variety of biological activity of 1,3,4-thiadiazoles has been described.

Acknowledgement

The authors are very much thankful to the Principal and the management of Bapatla Educational Society, Bapatla for the facilities provided in collecting the materials for this work.

References

1. Roblin RO, Clapp JW (1950) The preparation of heterocyclic sulfonamides. *J Am Chem Soc* 72: 4890-4892.
2. Maren TH (1967) Carbonic anhydrase: Chemistry, Physiology and Inhibition. *Physiol Rev* 47: 595-781.
3. Maren TH (1991) "The links among biochemistry, physiology and pharmacology in carbonic anhydrase mediated systems" in Carbonic anhydrase from biochemistry and genetics to physiology and clinical medicine E Botre et al Eds, VCh. Weinheim 186-207.
4. Supuran CT (1994) "Carbonic anhydrase inhibitors" in carbonic anhydrase and modulation of physiologic and pathologic processes in the organism. I Puscas Ed, Helicon, Timisoara 29-111.
5. Lu K, Loo T (1980) The Pharmacologic fate of the antitumor agent 2-amino-1,3,4-thiadiazole in the dog. *Cancer Chemother Pharmacol* 4: 275-279.
6. Gupta RR, Kumar M, Gupta V (2005) Heterocyclic Chemistry II, Five membered heterocycles, Springer (India) private LTD 566-578.
7. Kornis G (1984) 1,3,4-thiadiazoles in Comprehensive heterocyclic chemistry, Katritzky AR ed, Pergamon press Part 4B 6: 545-578.
8. Matwijczuk A, Kamiński D, Górecki A1, Ludwiczuk A2, Niewiadomy A, et al. (2015) Spectroscopic studies of dual fluorescence in 2-((4-fluorophenyl) amino)-5-(2,4-dihydroxybenzeno)-1,3,4-thiadiazole. *J Phys Chem A* 119:10791-10805
9. Brancato G, Signore G, Neyroz P, Polli D, Cerullo G, et al. (2015) Dual fluorescence through Kasha's rule breaking: An unconventional photo-mechanism for intracellular probe design. *J Phys Chem B* 119: 6144-6154.
10. Arkadiusz Matwijczuk, Dariusz Kluczyk, Andrzej Górecki, Andrzej Niewiadomy, Mariusz Gagoś (2016) Solvent effects on molecular aggregation in 4-(5-heptyl-1,3,4-thiadiazol-2-yl) benzene-1,3-diol and 4-(5-methyl-1,3,4-thiadiazol-2-yl) benzene-1,3-diol. *J Phys Chem B* 120: 7958-7969.
11. Matwijczuk A, Kluczyk D, Górecki A, Niewiadomy A, Gagoś M (2017) Spectroscopic studies of fluorescence effects in bioactive 4-(5-heptyl-

1,3,4-thiadiazol-2-yl) benzene-1,3-diol and 4-(5-methyl-1,3,4-thiadiazol-2-yl) benzene-1,3-diol molecules induced by pH changes in aqueous solutions. *J Fluoresc* 27:1201-1212.

12. Aly AA, El-Sayed R (2006) Synthesis and biological activity of new 1,3,4-thiadiazole derivatives. *Chem Pap* 60: 56-60.
13. Pintilie O, Profire L, Sunel V, Popa M, Pui A (2007) Synthesis and antimicrobial activity of some new 1,3,4-thiadiazole and 1,2,4-triazole compounds having a DL-Methionine moiety. *Molecules* 12:103-113.
14. Vasoya SL, Paghdar DJ, Chovatia PT, Joshi HS (2005) Synthesis of some new thiosemicarbazide and 1,3,4-thiadiazole heterocycles bearing benzo[b] thiophene nucleus as a potent antitubercular and antimicrobial agents. *J Sci, Islamic Republic of Iran* 16: 33-36.
15. Mohd Amir, Arun Kumar, Israr Ali, Khan SA (2009) Synthesis of pharmaceutically important 1,3,4-thiadiazole and imidazolinone derivatives as antimicrobials. *Indian J Chem* 48B:1288-1293.
16. Varsha Jatav, Jain SK, Kashaw SK, Mishra P (2006) Synthesis and antimicrobial activity of novel 2-methyl-3-(1,3,4-thiadiazoyl)-4-(3H) quinazolinones. *Indian J Pharm Sci* 68: 360-363.
17. Shaukath A Khanum, Sheena Shashikanth, Belagur S Sudha (2003) A facile synthesis and antimicrobial activity of 3-(2-aryloyloxy) methyl-5-mercapto-4-phenyl-4H-1,2,4-triazole and 2-(2-aryloyloxy) methyl-5-N-phenylamino-1,3,4-thiadiazole analogues. *Science asia* 29: 383-392.
18. Rajak H, Veerasamy R, Kumar Gupta A, Dhar Kharya M, Mishra P (2009) Synthesis, characterization and biological evaluation of some novel 2,5-disubstituted-1,3,4-thiadiazoles for their potential antimicrobial activity. *Digest J Nanomaterials and Biostructures* 4: 443-451.
19. Vosooghi M, Akbarzadeh T, Fallah A, Fazeli MR, Jamalifar H, et al. (2005) Synthesis of substituted 1,3,4-oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole derivatives as potential antimicrobial agents. *J Sci I R Iran* 16:145-151.
20. Xin-Ping Hui, Lin-Mei Zhang, Zi-yi Zhang (1999) Synthesis and antibacterial activities of 1,3,4-thiadiazole, 1,3,4-oxadiazole and 1,2,4-triazole derivatives of 5-methylisoxazole. *Indian J Chem* 38B:1066-1069.
21. Shashikant R Pattan, Desai NS, Jadhav SG, Koti BC, Pattan JS, et al. (2008) Synthesis of some new thiadiazole derivatives and evaluation of their antitubercular activity. *Indian J Heterocycl Chem* 17: 289-290.
22. Thaker KM, Joshi HS (2005) Synthesis and pharmacological evaluation of 2-(3',5'-dichlorobenzo[b]thiophen-2-yl)-5-arylamino-1,3,4-thiadiazoles. *Indian J Chem* 44B: 410-412.
23. Rajesh Sharma, Jitendra Sainy, Subhash Chandra Chaturvedi (2008) 2-amino-5-sulfanyl-1,3,4-thiadiazoles: A new series of selective cyclooxygenase-2-inhibitors. *Acta Pharm* 58: 317-326.
24. Basavaraja KM, Somasekhar B, Appalaraju S (2008) Synthesis and biological activity of some 2-[3-substituted-2-thione-1,3,4-thiadiazole-5-yl] aminobenzothiazoles. *Indian J Heterocycl Chem* 18: 69-72.
25. Jyothi C, Amit Kumar Das, Palash Pal, Mayukh Baidya (2017) Synthesis and anti-inflammatory activities of some new substituted thiadiazolo-thieno-pyrimidinones. *Indian J Heterocyclic Chem* 17:191-192.
26. Srivastava SK, Srivastava S, Srivastava SD (1999) Synthesis of new carbazolyl-thiadiazol-2-oxo-azetidines. Antimicrobial, anticonvulsant and anti-inflammatory agents. *Indian J Chem* 38B:183-187.
27. Gopal Krishna B, Venkatesam A, Srinivas B, Venkateshwar Rao J, Sarangapani M (2005) Synthesis of 5-(2-substituted benzoxazol-5-yl)-2-methylthio/ benzylthio/ arylamino carbonyl methylthio-1,3,4-thiadiazoles as anti-inflammatory agents. *Indian J Heterocycl Chem* 15:109-112.
28. Poonam Kamotra, Avinash K Gupta, Rajive Gupta, Somal P, Singh S (2007) microwave assisted synthesis and biological activity of 3-alkyl/ aryl-6-(1-chloro-3,4-dihydroronaphth-2-yl)-5,6-dihydro-s-triazolo[3,4b] [1,3,4]thiadiazoles. *Indian J Chem* 46B: 980-984.
29. Plaska E, Shahin G, Kelin P, Duslu TN, Altino G (2002) Synthesis and anti-inflammatory activity of 1-acylthio semicarbazides, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazolo-3-thiones. *II Farmaco* 7:101-107.
30. Shashikant R Pattan, Desai NS, Khade AB, Rasal VP, Paschapur MS (2008) Synthesis of some new thiadiazole derivatives and their antidiabetic activity. *Indian J Heterocycl Chem* 17:283-284.
31. Shashikant R Pattan, Prajact Kekare, Pranesh, Raveendra LH, Hariprasad CK (2009) Synthesis and evaluation of some substituted thiadiazoles as antidiabetic agents. *Indian J Heterocycl Chem* 18: 317-318.
32. Foroumadi A, Sheibani V, Sakhteman A, Rameshk M, Abbasi M, et al. (2007) Synthesis and anticonvulsant activity of novel 2-amino-5-[4-chloro-2-(2-chlorophenoxy) phenyl]-1,3,4-thiadiazole derivatives. *Daru* 15: 89-93.
33. Bahar Ahmed, Mohd Yusuf (2010) Synthesis of aromatic aldehyde imine derivatives of 2-thiobenzyl-1,3,4-thiadiazole and evaluation of their anticonvulsant activity. *Indian J Chem* 49B: 241-246.
34. Kemal Sancak, Yasemin Unver, Mustafa ER (2007) Synthesis of 2-acylamo, 2-arylamino and ethoxycarbonyl imino-1,3,4-thiadiazoles as antitumor agents. *Turk J Chem* 31:125-134.
35. Pathak US, Alagarsamy V (2000) Synthesis and pharmacological investigation of some 2-substituted[1,3,4]thiadiazolo[2,3-b]quinazolin-5-(4H)-ones as antihypertensive agents. *Indian drugs* 37: 51-55.
36. Pandey VK, Pathak LP, Mishra SK (2005) Synthesis and characterization of isoquinolinyl quinazolinones and a study of their antiviral and antifungal activities. *Indian J Chem* 44B:1940-1943.
37. Pandey VK, Negi HS, Joshi MN (2003) Synthesis and biological activity of some new benzophenothiazines. *Indian J Chem* 42B: 206-210.
38. Chhajed MR, Khedekar PB, Mundhey AS (2007) Synthesis and free radical scavenging activity of some 1,3,4-thiadiazole derivatives. *Indian J Heterocycl Chem* 16:259-262.
39. Randhavane PV, Narwade SK, George Saji, Karale BK (2010) Synthesis and biological screening of some halogenated thiadiazoles and triazoles. *Indian J Chem* 49B:89-95.
40. Sanmati K Jaim, Mishra P (2004) Preparation and evaluation of some 1,3,4-thiadiazoles as diuretic agents. *Indian J Chem* 43B:184-188.
41. Man-Lin Li, You-Ming Zhang, Tai-Bao Wei (2007) Synthesis and bioactivity of 2,5-bismercapto-1,3,4-thiadiazoles heterocyclic derivatives. *Indian J Chem* 46B: 544-549.